
URALI: A PROPOSAL OF APPROACH TO REAL-
TIME AUDIO SYNTHESIS IN UNITY

Enrico Dorigatti
Conservatorio di Musica “F. A. Bonporti”
enricodorigatti@rocketmail.com

program an audio synthesis dedicated environment like
the ones mentioned above.

Natively, inside Unity, there are no istruments that can
produce sound and that can be driven by an algorithm, in-
struments that are a must to carry out an evolving and un-
predictable sonification; instead, there is a base where to
start to build a sound synthesis chain, a very interesting
and useful native function called OnAuioFilterRead. It is
called from a separate thread and it aims to fill a buffer
with samples that are going to represent sounds when
played by the speakers. However, there are no classes
providing objects with which easily synthesize basic
waves or carry out other types of sound synthesis; plus,
creating a synthesis chain within OnAuioFilterRead is not
so immediate and can easily lead to confused code, as
well as a loss of performance. From here, the decision to
built some personal instruments in order to obtain an al-
gorithmic sonification, ended in building from scratch a
solid and optimized library containing instruments for the
so called “academic” audio synthesis.

2. GENESIS

The first project of URALi was a simple sinusoidal oscil-
lators class meant to carry out a precise and specific task,
that was providing sinusoidal waves's data ready to use in
various synthesis processes (ring modulation, additive
and FM), to create the algorithmic, real-time and visual-
s-related sonification of Life, an audiovisual generative
software based on a custom version of the famous J. Con-
way's Life algorithm.

However, the project grew up very quickly, eventually
becoming the base where to start the building of a bigger
library to be used for the procedural and academic-like
sonification of any Unity project using it, bringing also an
added value that comes from the proven extreme simplic-
ity to integrate and correlate, in this fully multimedial en-
vironment, audio data with visual ouputs and/or algo-
rithms, and vice-versa.

3. INSIDE URALI

URALi is, at the moment, a full-working audio library
that offers basic objects for the audio synthesis. In this
paragraph is proposed an overview of the actual state of
completion of the library, as well as the main improve-
ments scheduled to be implememented as soon as possi-
ble, since there is still a lot of work to do in order to make
URALi a really powerful instrument.

ABSTRACT

This paper aims to give a basic overview about the
URALi (Unity Real-time Audio Library) project, that is
currently under development. URALi is a library that
aims to provide a collection of software tools to realize
real-time sound synthesis in applications and softwares
developed with Unity.

1. INTRODUCTION

Unity is a developing environment used for the creation
of software applications, in particular videogamens and
mobile apps. Today is well recognized due to the amount
of instruments it offers within its environment, as well as
for the great quality of the final product in general, and of
the graphic in particular. It has, also, a huge community
of users all over the world, made of people helping each
other in a collaborative atmosphere.

Unity is well known for the visuals quality, also if ev-
eryone knows that an app -and also more a game- needs
not only high level graphic, but also a great audio to re-
sult very effective and addictive. Pre-made audio clips are
very well supported within Unity, with a variety of ef-
fects to manipulate it, and a virual mixer where to mix to-
gether various sources.

However, there is no only the case where scenes are
built by the developer and there is a story to follow. In
fact, there is also the case of the generative and algorith-
mic art1, today quite popular, as well as the sonification
one, where there are little or no rules, and the application
evolves autonomously during time, based on algorithms
and random events, as well as on rules. For those cases, a
developer will likely not use a premade clip, but baybe
will search for something mor organic and maybe uncom-
mon, and, most of all, that can evolve during time related
to the application's visuals.

Of course there are way to control synthesis-dedicated
softwares like Supercollider and Max/MSP via OSC pro-
tocol, but going that way means the use of external tools
that can work (interpret and send/receive) OSC data, and,
more important, knowledge about how to operate and

Copyright: © 2019 Enrico Dorigatti . This is an open-access

article distributed under the terms of the Creative

Commons Attribution License 3.0 Unported,

which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

1E. Dorigatti, “Life”; G. Albini, “Memoriale”

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:author2@smcnetwork.org

3.1 Actual state of completion

At the moment, URALi provides an implementation of
the following object and features:

 sinusoidal, triangular, sawthooth and square os-
cillators;

 lookup oscillator;

 PolyBLEP algorithm to antialiase harmonic
waveforms;

 multi-segment (not limited to) ADSR envelope;

 granulator;

 white noise source;

 convenience objects (enveloped oscillator, addi-
tive module);

 multithreading.

3.2 Scheduled features

Among other minor features, and improvements, the pri-
oritay ones are:

 wavetable to play user's own waveforms;

 GUI to tweak the parameters inside Unity editor
and not only inside the code;

 extension of the convenience objects section,
adding, among the others, modules for other
types of synthesis;

 miscellaneous utility features, like the possibility
to record to a wav file and to view the spectro-
gram and the waveform generated.

4. THE LOGIC OF URALI

It is worth to distinguish between how URALi works in
the background and how is meant to be used on the final
user side, to have at last an idea of the whole process.

4.1 Internal synthesis logic and design

The idea benind URALi is to avoid the saturation of the
OnAudioFilterRead function with any kind of wave cal-
culation or wavetable's sample interpolation. So it leaves
all the calculation tasks to a separate and much more
faster background thread, that eventually returns the re-
sult of all operations, allowing OnAudioFilterRead to car-
ry out minor tasks, like amplitude or frequency control,
without any performance loss, that would mean disconti-
nuities in the waveform.

4.2 User side design

On the user side, URALi needs the user to write its own
audio synthesis chain inside a function that has to be
passed as the argument for another function that starts the
audio engine. Then, various parameters -such as frequen-

cy or amplitude- of the objects can be modified in run-
time thanks to public properties, changing the acoustic
characteristics of the final output. To achieve an audible
result, then, one have to recall inside of OnAudioFilter-
Read the function of the library that returns the samples,
making possible to hear a sonic result at last.

5. CONCLUSIONS

URALi is still in development and that leads to having,
right now, an instrument that provides only the very es-
sential tools for the audio synthesis, also if those works
perfectly. The hope is that the project (as well as the gen-
erative art as discipline) can interest more artists and Uni-
ty developers everyday, supported by a very powerful
and friendly development environment.

Last note is that URALi, first of all, is my personal ap-
proach and solution to the lack of instruments for genera-
tive audio that I found in Unity. That means that it may
not be ther perfect solution, nor the only one. It works
very well but, as the title says, it is a proposal.

	1. INTRODUCTION
	2. GENESIS
	3. INSIDE uraLI
	3.1 Actual state of completion
	3.2 Scheduled features

	4. the logic of urali
	4.1 Internal synthesis logic and design
	4.2 User side design

	5. CONCLUSIONS

