
DAW-Integrated Beat Tracking for Music Production

Brett Dalton
University of Victoria

brettdalton.ca@gmail.com

David Johnson
University of Victoria
davidjo@uvic.ca

George Tzanetakis
University of Victoria
gtzan@uvic.ca

ABSTRACT

Rhythm analysis is a well researched area in music infor-
mation retrieval that has many useful applications in music
production. In particular, it can be used to synchronize the
tempo of audio recordings with a digital audio workstation
(DAW). Conventionally this is done by stretching record-
ings over time, however, this can introduce artifacts and
alter the rhythmic characteristics of the audio. Instead, this
research explores how rhythm analysis can be used to do
the reverse by synchronizing a DAW’s tempo to a source
recording. Drawing on research by Percival and Tzane-
takis, a simple beat extraction algorithm was developed
and integrated with the Renoise DAW. The results of this
experiment show that, using user input from a DAW, even
a simple algorithm can perform on par with popular pack-
ages for rhythm analysis such as BeatRoot, IBT, and aubio.

1. INTRODUCTION

Tempo is a feature of audio which is commonly analyzed
in Music Information Retrieval (MIR) due to its fundamen-
tal role in music. Tempo is described by a pulse, a set of
steady intervals of time which govern the way that music
is perceived and expressed. In a written piece of music,
notes and rhythmic events are aligned in relation to this
pulse, which is grouped and subdivided in various ways,
ultimately forming the piece’s structure. This underlying
structure is necessary for musicians to synchronize with
each other while performing, and it allows listeners to un-
derstand what they hear. The importance of tempo in mu-
sic makes for a broad range of practical applications for
its analysis, ranging from genre classification to DJ soft-
ware, [1], [2], [3].

In digital music production, tempo is most often described
by a piece’s global beat rate, commonly measured in Beats
Per Minute (BPM). Generally this is understood as a con-
stant value which does not vary over the duration of the
piece. This is different from how music is traditionally
performed by live musicians, where the tempo will natu-
rally drift without mechanically perfect synchronization to
some clock.

This presents three possibilities for digital music produc-
ers trying to work with live source material: One, to syn-
chronize the recording with a constant BPM by using time-

Copyright: c© 2019 Brett Dalton et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

stretching; two, to extract the structure from the original
piece and synchronize their software to the recording; or,
three, to work with the musical structure by ear, without
digital assistance.

In order to explore the second option, this paper uses
the work of Percival and Tzanetakis [4] with some modi-
fications and additions, to demonstrate the effectiveness of
beat tracking in a modern music production setting. This
has been accomplished by developing a piece of software
which integrates a simple beat extraction algorithm in a
Digital Audio Workstation (DAW) to accomplish tasks which
would otherwise be cumbersome when working with live
recorded material.

The DAW that has been chosen for this research is Renoise,
as it has a native scripting API that can be used to modu-
late tempo over time. The core algorithm was written and
tested in Python, and Lua was used to integrate the code
with Renoise’s scripting interface. Later, the algorithm was
ported to C for real-time use. The results of this work have
been evaluated using mir-eval 1 [5], a python library de-
signed for gathering statistics for common MIR tasks. The
results are compared to the established beat tracking meth-
ods aubio [6], IBT [7], and BeatRoot, [8].

2. BACKGROUND

Beat tracking is a well researched area in MIR that has
been analyzed in different contexts using a variety of meth-
ods. Early approaches to beat tracking involved process-
ing the symbolic representations of music such as musical
scores and MIDI data. However, as computing technology
and theory developed, it became possible to analyze raw
audio recordings for the purpose of beat extraction and the
extraction of more complex metric information, [9], [10].

As noted by Gkiokas et al., most tempo and beat extrac-
tion algorithms share some common structural elements,
[11]. The most common approach for processing an au-
dio signal involves retrieving what is known as an onset
strength signal (OSS), novelty curve, or salience function,
[2], [12], [13]. This is a transformation of the original au-
dio that attempts to capture a continuous function of rhyth-
mic importance over time. A number of different met-
rics can be used to derive the OSS such as spectral flux,
phase deviation, and complex domain methods, [14] as
well as machine learning [15]. Peaks in this signal can
be thought of as discrete rhythmic events that can be used
in further analysis to extract information using a variety
of techniques. These techniques may involve multi-agent

1 https://github.com/craffel/mir_eval

mailto:brettdalton.ca@gmail.com
mailto:davidjo@uvic.ca
mailto:gtzan@uvic.ca
http://creativecommons.org/licenses/by/3.0/
https://github.com/craffel/mir_eval

systems [16], autocorrelation [4], and it is also common
to use higher level musical features such as chord changes
and drum patterns to obtain more accurate results, [10].

As of today, few DAWs incorporate true beat tracking
for recorded material, but instead offer tools for manually
solving tempo related problems such as audio to MIDI con-
version, BPM detection, time stretching, and quantization.
This is perhaps due to beat tracking being less reliable and
less flexible than the alternatives.

There has been past work in creating an interactive sys-
tem for beat tracking. In 2001, Dixon developed graphical
software for beat extraction, data editing, sonification, and
a variety of other tasks, [17]. At the time, he noted some
deficiencies in similar tools; one being that they did not
allow for the user to correct mistakes in the beat tracking
process. The goal of creating this beat tracking software is
to continue on Dixon’s line of work and integrate a graphi-
cal user interface with a beat tracking system that is useful
for real world applications in a music production environ-
ment.

3. ALGORITHM DESCRIPTION

Our proposed beat extraction algorithm contains the fol-
lowing stages similar to other methods: extract an onset
strength signal from the desired audio file; extract individ-
ual onsets and their attributes such as loudness and timing
with peak picking; and iterate over these onsets to find po-
tential beats using a simple heuristic induction method.

The Streamlined tempo induction algorithm developed
by Percival and Tzanetakis is designed with the intention
of using the simplified forms of common techniques while
still attaining reliable performance [4]. The task of tempo
induction has different requirements from beat extraction,
but they are naturally related. Our algorithm employs the
same OSS and peak picking methods as the Streamlined
algorithm, with some modifications and additions.

Figure 1. The proposed block diagram of the beat track-
ing system. Note the ability to generate, modify, and re-
process beats.

3.1 OSS Calculation

OSS is normally calculated using the spectral flux of the
input signal. This involves taking a Short Time Fourier
Transform (STFT) and taking the sum of all frequencies
bins which increase in energy from frame to frame. We
ignore the decreasing bins because they are typically less
rhythmically relevant.
flux(t) is the raw spectral flux function. rect(x) is the

rectification function, such that rect(x) = 0 where x < 0,
elsewhere rect(x) = x. X denotes the Fourier transform
of a signal as a function of time and frequency.

flux(t) =

N∑
i=0

rect(|X(t, i)| − |X(t− 1, i)|) (1)

Our OSS calculations are a slight modification of the Stream-
lined algorithm. The original approach involved using a
low-passed copy of the result of the flux calculations to re-
move noise, but we use the unfiltered flux to preserve the
exact timing of fluctuations, something more valuable for
beat extraction than for global tempo analysis.

This approach gives a decent metric of where rhythmi-
cally salient events occur, however, it is flawed because
it gives much less weight to low frequency fluctuations.
By definition, low frequency signals fluctuate more slowly
than high frequencies, and, as such, their fluctuations will
have a much lower amplitude within a given STFT win-
dow. This means that this method is not able to clearly dis-
tinguish between a short click and bass drum, despite the
fact that the bass drum is much more important for rhyth-
mic perception.

In an attempt to remedy this, we make a copy of the flux
using a downsampled copy of the input, and then mix it
into the final output. We’ll call this fluxadj(t), as de-
scribed below, with a = 0.85 and b = 0.15.

fluxadj(t) = aflux(t) + bfluxdownsampled(t) (2)

Overall, this minor addition marginally improves results,
but a better solution is worth investigating. Going forward,
it may be worthwhile to use a multiband OSS calculation,
as described by Bock, [18], or develop a different spectral
flux calculation that compensates for bin fluctuation over
frequency.

3.2 Peak Picking

Our next step is to extract each onset event with peak pick-
ing. We high-pass the OSS, which produces a new signal
where sudden increases in flux are positive, and sudden
decreases are negative. We segment the signal based on
the positive zero crossings and find the maximal value for
each region. We add these local maxima times to the set
of peaks which gives us a set of discrete events that we can
use for our final prediction.

The following expression defines the set of all positive
high-passed OSS zero crossings:

{crossi = t | OSShp(t) > 0 and OSShp(t− 1) < 0}
(3)

peaki refers to the position of each onset event in time.
The argmax function uses the last two parameters to spec-
ify a range.

peaki = argmax(OSShp, crossi, crossi+1) (4)

3.3 Beat Extraction

Next we must determine which beats to select. In the case
that we have an estimate of the time delta between beats,
we can use the error as a simple metric for determining if
the peak is a beat. We get this expected beat time through
induction by using a previous known beat’s time plus some
expected delta. Two initial beats are provided as input to
the algorithm to begin the induction process. In our sys-
tem, these are created by the user. Finding the peak with
the minimum error is a trivial procedure on an ordered list
of peaks; The error will increase monotonically, so once
we find a peak with a positive error, no subsequent peaks
will have a smaller error. This is the basic strategy for
building our set of beats.
ε(i, j) is the error for a given peak event, i, with the prior

beat, j. If no peak is found within a certain error threshold,
we skip a beat to find the next one.

ε(i, j) = (peaki − beatj−1)− δµ(j) (5)

In order to allow for varying tempos, we define a local
beat delta, δµ(i), which is expressed in terms of previously
found beat deltas. δµ(i) describes the expected beat delta
for beati as a function of previous beat deltas. Larger val-
ues of the averaging window, N , will result in more stable
BPM fluctuations.

δµ(i) =

∑N
j=1 δi−j

N
(6)

Finally we output this set of beats, which we will use to
generate a tempo curve of the entire audio recording. An
initial beat delta can either be supplied manually or pre-
dicted by an algorithm, such as the Streamlined algorithm.
We also define an error tolerance, such that if no beat is
found within that tolerance we double the length of the
beat time and continue to search. When we do find a valid
peak, we fill in the missing beats by subdividing the beat
and reset the expected beat delta. Some optional param-
eters include the OSS threshold level, error tolerance and
the averaging window, N , for the expected beat delta.

4. DAW INTEGRATION

Figure 2. An image of the beat extraction tool made with
the Renoise scripting API.

The Renoise DAW provides a scripting API that allows
users to develop their own tools using the Lua scripting
language. The API allows the developer to access some
of the DAW’s internal GUI elements and automate certain
production tasks.

The tool that has been created to integrate this algorithm
with Renoise takes advantage of Renoise’s sample editor,
which already has the ability to place slice markers that
partition an audio file into multiple segments. The algo-
rithm takes a sequence of beat times as inputs and gener-
ates a sequence as output.

To use the tool, the user can add two or more markers to
initialize the algorithm, and then they can press the ”Load
Beats as Slices” button, which will run the algorithm on
this input, generating a new set of slices. These generated
slices can then be editted further, or they can be used to
generate a tempo curve with the ”Slices to BPM Automa-
tion” button. Extra beats can be added at various places in
the audio file to correct errors, and ensure that the system
correctly tracks erratic variations in tempo. These features
constitute a user-in-the-loop interface, where the user can
see the results of the algorithm, tweak the inputs, and then
generate more refined output, as seen in figure 1.

Figure 3. Renoise’s sample editor. The orange lines are
slice markers which the user can use to supply initial beat
info.

There are a number of parameters that can be exposed to
the user to fine tune the behaviour of the algorithm, how-
ever, they have not yet been integrated into the tool. These
parameters include the confidence threshold, peak detec-
tion threshold, beat error tolerance and so on. This would
make it easier to work with different kinds of material, as
inputs that have more erratic rhythmic fluctuations will re-
quire more fine tuned parameters to produce accurate re-
sults.

The tool was tested with various recordings by the author,
and it was found to work very well with music featuring
strong percussion such as rock and jazz. However it was
not suitable for use with less percussive recordings such as
piano music. It may be useful in the future to study the
effectiveness of the tool by comparing the time differences
between manual and automatic beat annotation in a user
study. This would give some more objective grounds to
decide whether the algorithm is ready for practical use.

5. EVALUATION

The mir-eval 2 [5] evaluation suite was used to evaluate
the efficacy of the algorithm against the beat tracking algo-
rithms in the aubio [6], IBT [7], and BeatRoot [8] libraries.

2 https://github.com/craffel/mir_eval

https://github.com/craffel/mir_eval

Algorithm Aubio [6] IBT [7] BeatRoot [8] Proposed (automatic) Proposed (user initialized)
F-Measure 0.57 0.27 0.70 0.50 0.95

Table 1. F-Measure results from mir-eval. In the automatic column, the proposed algorithm is seeded with a bpm from the
Streamlined tempo estimation algorithm, whereas in the user initialized column the algorithm is given two beats from the
ground truth.

There are some complications when comparing this algo-
rithm with other methods due to the fact that user input is
used for initial BPM estimations, whereas other methods
predict the BPM automatically. This puts the other algo-
rithms at a disadvantage, and so it is not a fair compari-
son. Of the three methods tested, it was unclear if the host
framework (Sonic Annotator) [19] provided the ability to
supply a BPM estimate or initial beat. In order to show
the difference in performance between the automatic and
human-in-the-loop approach, the experimental results pro-
vided show our algorithm using user-supplied initial beat
inputs (user initialized) as well as automatically generated
input using the Streamlined tempo estimation algorithm
(automatic). As seen in table 1, the algorithm performs
much better when supplied with initial beats, bringing it’s
F-Measure of 0.50 up to 0.95.

The user supplied beat method uses two beats from the
ground truth for each file in order to initialize the algorithm
with a valid initial beat and initial beat delta. One con-
cern with this approach is that mir-eval’s F-measure score
includes these shared beats, but their contribution to the
score is negligible because they only make about 40 of the
1300 beats in the entire dataset. Since the ground truth an-
notations were derived from listeners tapping along to the
audio, this should be a fair approximation of a real human-
in-the-loop use case.

The data used includes 19 files from Sound and Music
Computation for MIREX 2017, [20]. The set of files used
were ones labelled as being easy; the files named SMC 271
through SMC 289. Each audio clip in the dataset is 40 sec-
onds long and contains roughly 30 to 130 beats depending
on the tempo. These files have strong percussive elements,
while the remainder of the dataset is mostly classical mu-
sic with weak rhythmic features. As stated previously the
OSS calculation used is not adequate for detecting In the
future this test data will need to be expanded, and the al-
gorithm should be improved to work with less percussive
audio sources.

The takeaway from these results is that a small amount
of user provided information can be used to significantly
improve the performance of a simple beat tracking algo-
rithm. Other methods have been able to achieve 60%-80%
F-measure accuracy, [21], [22], [12], and some methods
that have been able to achieve up to 90% accuracy, [15].
This shows that the reframing of the beat induction prob-
lem allows a simplified algorithm to perform on par with,
and even surpass, some of the most sophisticated algo-
rithms within a limited practical context. These results are
encouraging for further research into how these methods
can be used to improve the functionality and usability of
DAW software.

6. APPLICATIONS & FURTHER WORK

In this paper we have explored one of the more immedi-
ately obvious uses of beat tracking, which is synchronizing
DAW software to an audio recording. There is, however,
a wealth of other potential applications for beat tracking
ranging from practical to experimental in nature.

Any given set of beats yields a tempo curve which is the
function of tempo over time. The tempo curve is a sig-
nal like any other, and can be manipulated using filters
and other conventional signal processing techniques. At
the macro scale, the filtering of tempo curves can be used
to remove tempo drift from recordings, as well as quan-
tizing and performing other rhythmic corrections. With a
high resolution tempo curve that captures rhythmic varia-
tion below the beat level, it would be possible to extract
and manipulate musical rhythms in even more novel ways.
One could imagine using a ”tempo equalizer” on the tempo
curve of a jazz recording to increase the amount of swing,
or remove it entirely. The extraction of tempo curve in-
formation combined with time stretching and other audio
manipulation techniques has many promising applications,
and yet few, if any, of these applications have been realized
in common audio software.

7. CONCLUSION

The results of this work show a promising potential for
beat tracking algorithms in Digital Audio Workstations.
We showed how simple beat tracking methods can be used
to reliably synchronize DAW tempo with an audio source
with user input and interactive corrections.

Currently the most significant concern with the method
used in this work is the limited data used for testing. For
future work we plan to conduct experiments with a larger
and more varied data set. The algorithm also needs to be
improved in order to deal with music that does not have
strong percussive elements. Therefore, to make this viable,
the most urgent issue to be addressed is the OSS calcula-
tion. The development of a new metric which is more able
to capture rhythmic salience will be required for further
work with material that does not contain strong transients.

Nevertheless, our method produces accurate results when
provided with a small amount of user input, even surpass-
ing the performance of conventional methods. This method
is convenient and easy to use for production purposes in a
DAW, and could easily be augmented with more sophisti-
cated beat tracking techniques. With further work, DAW
integrated beat tracking may become a powerful and inter-
active tool for music producers looking for creative ways
to manipulate rhythm in digital music.

8. REFERENCES

[1] K. Jensen and T. H. Andersen, “Beat estimation on the
beat,” in Applications of Signal Processing to Audio
and Acoustics, 2003 IEEE Workshop on. IEEE, 2003,
pp. 87–90.

[2] D. P. Ellis, “Beat tracking by dynamic programming,”
Journal of New Music Research, vol. 36, no. 1, pp. 51–
60, 2007.

[3] J. L. Oliveira, M. E. Davies, F. Gouyon, and L. P. Reis,
“Beat tracking for multiple applications: A multi-agent
system architecture with state recovery,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 20, no. 10, pp. 2696–2706, 2012.

[4] G. Percival and G. Tzanetakis, “Streamlined tempo es-
timation based on autocorrelation and cross-correlation
with pulses,” IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), vol. 22,
no. 12, pp. 1765–1776, 2014.

[5] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,
O. Nieto, D. Liang, D. P. Ellis, and C. C. Raffel,
“mir eval: A transparent implementation of common
mir metrics,” in In Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Confer-
ence, ISMIR. Citeseer, 2014.

[6] P. Brossier, “Automatic annotation of musical audio for
interactive systems,” Ph.D. dissertation, Ph. D. thesis,
Queen Mary University of London, London, UK, 2006.

[7] S. Dixon, “Automatic extraction of tempo and beat
from expressive performances,” Journal of New Music
Research, vol. 30, no. 1, pp. 39–58, 2001.

[8] C. Cannam, M. Mauch, M. E. P. Davies, S. Dixon,
C. Landone, K. C. Noland, M. Levy, M. Zanoni,
D. Stowell, and L. A. Figueira, “Mirex 2013 entry:
Vamp plugins from the centre for digital music,” 2013.

[9] M. E. Davies and M. D. Plumbley, “Context-dependent
beat tracking of musical audio,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 15,
no. 3, pp. 1009–1020, 2007.

[10] M. Goto, “An audio-based real-time beat tracking sys-
tem for music with or without drum-sounds,” Journal
of New Music Research, vol. 30, no. 2, pp. 159–171,
2001.

[11] A. Gkiokas, V. Katsouros, G. Carayannis, and T. Stafy-
lakis, “Music tempo estimation and beat tracking by
applying source separation and metrical relations.” in
ICASSP, 2012, pp. 421–424.

[12] P. Grosche, M. Müller, and C. S. Sapp, “What makes
beat tracking difficult? a case study on chopin
mazurkas.” in ISMIR, 2010, pp. 649–654.

[13] S. Dixon and E. Cambouropoulos, “Beat tracking with
musical knowledge,” in ECAI, 2000, pp. 626–630.

[14] S. Dixon, “Onset detection revisited,” in Proceedings
of the 9th International Conference on Digital Audio
Effects, vol. 120. Citeseer, 2006, pp. 133–137.

[15] ——, “Learning to detect onsets of acoustic piano
tones,” in Proceedings of the Workshop on Current Di-
rections in Computer Music Research, 2001, pp. 147–
151.

[16] M. Goto and Y. Muraoka, “A real-time beat tracking
system for audio signals.” in ICMC, 1995.

[17] S. Dixon, “An interactive beat tracking and visualisa-
tion system.” in ICMC. Citeseer, 2001.

[18] S. Böck, “Event detection in musical audio,” Ph.D. dis-
sertation, PhD thesis. Johannes Kepler University Linz,
Linz Austria, 2016.

[19] C. Cannam, M. O. Jewell, C. Rhodes, M. Sandler, and
M. d’Inverno, “Linked data and you: Bringing mu-
sic research software into the semantic web,” Journal
of New Music Research, vol. 39, no. 4, pp. 313–325,
2010.

[20] A. Holzapfel, M. E. Davies, J. R. Zapata, J. L. Oliveira,
and F. Gouyon, “Selective sampling for beat tracking
evaluation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 9, pp. 2539–2548,
2012.

[21] A. Pikrakis, I. Antonopoulos, and S. Theodoridis,
“Music meter and tempo tracking from raw polyphonic
audio.” in ISMIR, 2004.

[22] A. Mottaghi, K. Behdin, A. Esmaeili, M. Heydari, and
F. Marvasti, “Obtain: Real-time beat tracking in audio
signals,” arXiv preprint arXiv:1704.02216, 2017.

	 1. Introduction
	 2. Background
	 3. Algorithm Description
	3.1 OSS Calculation
	3.2 Peak Picking
	3.3 Beat Extraction

	 4. DAW Integration
	 5. Evaluation
	 6. Applications & Further Work
	 7. Conclusion
	 8. References

