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ABSTRACT

In this article we explore how the different semantics of
spectrograms’ time and frequency axes can be exploited
for musical tempo and key estimation using Convolu-
tional Neural Networks (CNN). By addressing both tasks
with the same network architectures ranging from shallow,
domain-specific approaches to deep variants with direc-
tional filters, we show that axis-aligned architectures per-
form similarly well as common VGG-style networks de-
veloped for computer vision, while being less vulnerable
to confounding factors and requiring fewer model parame-
ters.

1. INTRODUCTION

In recent years Convolutional Neural Networks (CNN)
have been employed for various Music Information Re-
trieval (MIR) tasks, such as key detection [1, 2], tempo es-
timation [3], beat and rhythm analysis [4—6], genre recog-
nition [7, 8], and general-purpose tagging [9, 10]. Typ-
ically, a spectrogram is fed to the CNN and then clas-
sified in a way appropriate for the task. In contrast to
recent computer vision approaches like Oxford’s Visual
Geometry Group’s (VGG) deep image recognition net-
work [17], some of the employed CNN architectures for
MIR tasks use rectangular instead of square filters. The
underlying idea is that, while for images the axes width
and height have the same meaning, the spectrogram axes
frequency and time have fundamentally different mean-
ing. For MIR tasks mainly concerned with temporal as-
pects of music (e.g., tempo estimation, rhythmic patterns),
rectangular filters aligned with the time axis appear suit-
able [3]. Correspondingly, tasks primarily concerned with
frequency content (e.g., chord or key detection), may be
approached with rectangular filters aligned with the fre-
quency axis [11]. In fact, tempo and key estimation can
be seen as tasks from two different ends of a spectrum
of common MIR tasks, which are addressed by systems
relying more or less on temporal or spectral signal prop-
erties (Figure 1). Systems for other tasks like general-
purpose tagging or genre recognition are found more to-
wards the center of this spectrum as they usually require
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Figure 1: Several MIR tasks and their reliance on spectral
or temporal signal properties.

both spectral and temporal information.

In [12] Pons et al. explored the role of CNN filter shapes
for MIR tasks. In particular, they examined using rectan-
gular filters in shallow CNNs for automatic genre recog-
nition of ballroom tracks. Defining temporal filter shapes
as 1 x n and spectral filter shapes as m x 1, they showed
that using temporal filters alone, 81.8% accuracy can be
reached, which is in line with a Nearest Neighbour clas-
sifier (k-NN) using tempo as feature scoring 82.3% [13].
Using just spectral filters, the test network reached 59.6%
accuracy, and a fusion architecture with both temporal and
spectral filters performed as well as an architecture using
square filters, scoring 87%. The experiments confirmed
that such directional filters can be used to match either
temporal or spectral signal properties and that both may
be useful for genre recognition.

Even though directional filters did not outperform square
filters, there are good arguments for using them: First,
CNNss using specialized, directional filters may use fewer
parameters or match musical concepts using fewer lay-
ers [14]. Second, by limiting what a filter can match,
one can influence what a CNN might learn, thus better
avoid “horses” [15] and improve explainability. The lat-
ter is especially interesting for genre recognition systems,
given their somewhat troubled history with respect to ex-
plicit matching of musical concepts [14,16]. To further ex-
plore how and why directional or square filters contribute
to results achieved by CNN-based classification systems
for MIR tasks, we believe it is beneficial to build on Pons
et al.’s work and experiment with tasks that explicitly aim
to recognize either high-level temporal or spectral prop-
erties, avoiding hard to define concepts like genre. Such
tasks are global key and tempo estimation.

The remainder of this paper is structured as follows: In
Section 2 we describe our experiments by defining both
tasks, the used network variants, the training procedure,
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and evaluation. The results are then presented in Section 3
and discussed in Section 4. Finally, in Section 5 we present
our conclusions.

2. EXPERIMENTS

For the purpose of comparing the effects of using different
filter shapes we train and evaluate different CNN architec-
tures for the key and tempo estimation tasks using several
datasets. In this section, we first describe the two tasks,
then discuss the used network architectures and datasets,
and finally outline the evaluation procedure.

2.1 Key Estimation

Key estimation attempts to predict the correct key for a
given piece of music. Oftentimes, the problem is restricted
to major and minor modes, ignoring other possible modes
like Dorian or Lydian, and to pieces without modulation.
Framed this way, key estimation is a classification problem
with N = 24 different classes (12 tonics, major/minor).
The current state-of-the-art system is CNN-based using a
VGG-style architecture with square filters [2] and a fully
convolutional classification stage, as opposed to a fully
connected one. This allows training on short and predic-
tion on variable length spectrograms.

In our experiments we follow a similar approach. As in-
put to the network (Section 2.3) we use constant-Q mag-
nitude spectrograms with the dimensions Fx x Tx =
168 x 60; Fx being the number of frequency bins and Tk
the number of time frames. Fi covers the frequency range
of 7 octaves with a frequency resolution of two bins per
semitone. Time resolution is 0.19s per time frame, i.e.
60 frames correspond to 11.1s. Since all training samples
are longer than 11.1s, we choose a random offset for each
sample during each training epoch and crop the spectro-
gram to 60 frames. To account for class imbalances within
the two modes, each spectrogram is randomly shifted along
the frequency axis by {—4,—3,...,6,7} semitones and
the ground truth labels are adjusted accordingly. We de-
fine no shift to correspond to a spectrogram covering the
7 octaves starting at pitch E1. In practice, we simply crop
an 8 octaves spanning spectrogram that starts at C1 to 7
octaves. After cropping the spectrogram is normalized so
that it has zero mean and unit variance.

2.2 Tempo Estimation

Even though tempo estimation naturally appears to be a
regression task, Schreiber and Miiller [3] have shown that
it can also be treated as a classification task by mapping
Beats Per Minute (BPM) values to distinct tempo classes.
Concretely, their system maps the integer tempo values
{30,...,285} to Ny = 256 classes. As input to a CNN
with temporal filters and elements from [18] and [14] they
use mel-magnitude-spectrograms. Even though we work
with other network architectures than [3] (Section 2.3), we
use the same general setup. We also treat tempo estimation
as classification into 256 classes and use mel-magnitude-
spectrograms with the dimensions Fp x Tt = 40 x 256
as input; Frp being the number of frequency bins and Tt

Module Module Size

ShallowMod DeepMod =0
DeepMod (=1
DeepMod =2
DeepMod =2
DeepMod ¢=3
DeepMod ¢=3

ClassMod ClassMod

(a) Shallow (b) Deep

Table 1: Used network architectures. (a) Shallow archi-
tecture consisting of a variant of the ShallowMod mod-
ule and a ClassMod module. (b) Deep architecture con-
sisting of multiple, DeepMod modules parameterized with
£ to influence the filter count and a C1assMod module.

the number of time frames. Fr covers the frequency range
20 — 5,000 Hz. The time resolution is 0.46 ms per time
frame, i.e., 256 frames correspond to 11.9s.

Just like the training excerpts for key estimation, the
mel-spectrograms are cropped to the right size using a
different randomly chosen offset during each epoch. To
augment the training dataset, spectrograms are scaled
along the time axis before cropping using the factors
{0.8,0.84,...,1.16,1.2}. Ground truth labels are ad-
justed accordingly [3]. After cropping and scaling spec-
trograms are normalized ensuring zero mean and unit vari-
ance per sample.

2.3 Network Architectures

To gain insights into how filter shapes affect performance
of CNN-based key and tempo estimation systems we run
experiments with two very different architectures: a rela-
tively shallow but specialized one, and a commonly used
much deeper one from the field of computer vision. Both
architectures are used for both tasks.

2.3.1 Shallow Architectures

Our Shallow architectures, outlined in Table 1a, consists
of two parts: the feature extraction module ShallowMod
and the classification module ClassMod. ShallowMod,
depicted in Table 2a, is inspired by a classic signal pro-
cessing approach that first attempts to find local spectro-
gram peaks along one axis, averages these peaks over the
other axis, and then attempts to find a global pattern, i.e.,
a periodicity for tempo estimation [19] and a pitch pro-
file for key detection [20]. In terms of CNNs this means
that our first convolutional layer consists of short direc-
tional filters (local peaks), followed by a one-dimensional
average pooling layer that is orthogonal to the short filters,
followed by a layer with long directional filters (global pat-
tern) that stretch in the same direction as the short filters.
We use ReLU as activation function for the convolutional
layers and to avoid overfitting we add a dropout layer [21]
after each ReL'U. The parameters k and pp let us scale the
number of convolutional filters and dropout probabilities.



(a) ShallowMod

Layer Temp Spec Square
Input
Conv, ReLU k,1x3 k,3x1 n.a.
Dropout PD PD n.a.
AvgPool Fr x1 1 x Tk n.a.
Conv, ReLU 64k, 1 x Tt 64k, Fx x 1 n.a.
Dropout PD PD n.a.
(b) DeepMod
Layer Temp Spec Square
Input
Conv, ReLU 2k, 1x 5 2%k, 5 % 1 2%k, 5% 5
BatchNorm
Conv, ReLU 2k, 1x3 2%, 3x1 2%, 3x3
BatchNorm
MaxPool 2x2 2x2 2x2
Dropout PD PpD Pp
(c) ClassMod
Layer Temp Spec Square
Input
Conv, ReLU Nt,1x1 Nkg,1x1 n.a.
GlobalAvgPool
Softmax

Table 2: Layer definitions for the three modules

ShallowMod, ClassMod, and DeepMod, describing
number of filters (e.g., k or 64k) and their respective
shapes (e.g., 1 X 3or 5 x b).

ShallowMod is followed by a fully convolutional classi-
fication module named C1lassMod (Table 2¢), which con-
sists of a 1 x 1 bottleneck layer (pointwise convolution)
with as many filters as desired classes (Nk or Nt), a global
average pooling layer, and the softmax activation func-
tion. Note, that because all directional filters are identically
aligned, the model has an asymmetric, directional capac-
ity, i.e., it has a much larger ability to describe complex
relationships in one direction than in the other.

We use the same general architecture for both key and
tempo estimation. The only differences are the filter
and pooling directions and dimensions. For tempo es-
timation we use temporal filters with pooling along the
frequency axis, and for key estimation spectral filters
with pooling along the time axis. Both architectures are
named after their filter directions, ShallowTemp and
ShallowSpec, respectively. We also adjust the pooling
and the long filters shape to the size of the input spectro-
gram, which is different for the two tasks.

2.3.2 Deep Architectures

The second architecture, Deep (Table 1b), is a common
VGG-style architecture consisting of six parameterized
feature extraction modules DeepMod (Table 2b) followed
by the same classification module that we have already
used in Shallow. Each of the feature extraction modules
contains a convolutional layer with 5 x 5 filters followed by
a convolutional layer with 3 x 3 filters. The convolutional
layers consist of 28 filters each, with network parameter

Split  Key Datasets

Training  80% of LMD Key U 80% of MTG Key
Validation 10% of LMD Key U 20% of MTG Key
Testing GiantStepsZKey, GTzanKey,

10% of LMD Key

Split  Tempo Datasets

Training 80% of EBall U 80% of MTG Tempo
U 80% of LMD Tempo
Validation 20% of EBall U 20% of MTG Tempo
U 10% of LMD Tempo
Testing GiantSteps Tempo, GTzan Tempo,

10% of LMD Tempo, Ballroom

Table 3: Dataset splits used in key (top) and tempo (bot-
tom) estimation experiments.

k and module parameter . While ¢ influences the number
of filters in an instance of DeepMod, k lets us scale the
total number of parameters in the network. As shown in
Table 1b, deeper instances have more filters. The convo-
lutional layers are followed by a 2 x 2 max pooling layer.
Should pooling not be possible along an axis, because the
output from the previous layer is only 1 wide or high, pool-
ing is skipped along that axis. This happens for exam-
ple, when a tempo spectrogram with its 40 bands passes
through more than 5 max pools. Each pooling layer is fol-
lowed by a dropout layer with probability pp. To counter
covariate shift, we add batch normalization [22] layers af-
ter each convolutional layer.

The general structure of the Deep architecture is cus-
tomized neither for the key nor for the tempo task. How-
ever, in order to investigate how different filter shapes af-
fect the network’s performance, we modify the described
architecture by replacing the square convolutional kernels
with directional ones, i.e., 3 x 3 with1 x 3 or 3 x 1, and
5x 5 with 1 x5 orb x 1. Analogous to the naming scheme
used for shallow networks, we denote the directional vari-
ants DeepTemp and DeepSpec. The original variant is
named DeepSquare.

2.4 Datasets

We use the following publicly available datasets from dif-
ferent genres for both training and evaluation (listed in al-
phabetical order). The used splits are randomly chosen and
listed in Table 3.

Ballroom(698samples): 30s excerpts with tempo an-
notations [23].

EBall (3,826 samples): 30s excerpts with tempo anno-
tations, excluding tracks also occurring in the regular
Ballroom dataset [3,23,24].

GiantSteps Key (604 samples): 2 min
electronic dance music (EDM) [25].

excerpts of

GiantSteps Tempo (661 samples): 2min excerpts of
EDM [25]. Revised tempo annotations from [26].



GTzan Key (836 samples): 30s excerpts from 10 differ-
ent genres [27]. Key annotations from [28].! Most
tracks with missing key annotations belong to the gen-
res classical, jazz, and hip-hop.

GTzan Tempo (999 samples): 30s excerpts from 10 dif-
ferent genres [27]. Tempo annotations from [29].

LMD Key (6,981 samples): 30s excerpts, predominantly
rock and pop [30,31]. Due to a MIDI peculiarity, this
dataset does not contain any tracks in C major. Some
form of data augmentation as described above is there-
fore necessary.

LMD Tempo (3,611 samples): 30s
nantly rock and pop [3,30].

excerpts, predomi-

MTG Tempo / MTGKey (1,158 samples): 2min EDM ex-
cerpts annotated with both key and tempo [3,32]. We
used only tracks that are still publicly available, have
an unambiguous key, and a high key annotation confi-
dence. ?

2.5 Evaluation

Since the proposed network architectures are fully convo-
lutional, we can choose at prediction time to pass a track
either in one long spectrogram or as multiple shorter win-
dows through the network. In the latter case, predictions
for all windows would have to be aggregated. Informal ex-
periments did not show a remarkable difference. For this
work we choose to predict values for whole spectrograms.

When evaluating key estimation systems either a simple
accuracy or a score is used that assigns additional value to
musically justifiable mistakes, like being off by a perfect
fifth.> For this work, we choose to only report the per-
centage of correctly classified keys. Tempo estimation sys-
tems are typically evaluated using the metrics Accuracyl
and Accuracy2. While Accuracyl reports the percentage
of correctly estimated tempi allowing a 4% tolerance, Ac-
curacy? additionally permits so-called octave errors, i.e.,
errors by a factor of 2 and 3 [23]. We choose to report only
Accuracyl.

For training we use Adam [33] as optimizer with a learn-
ing rate of 0.001, a batch size of 32, and early stopping
once the validation loss has not decreased any more dur-
ing the last 100 epochs. In this work, one epoch is de-
fined as having shown all training samples to the network
once, regardless of augmentation. We choose k so that we
can compare architectures with similar parameter counts.
Shallow is trained with k € {1,2,4,6,8,12} and Deep
with k € {2,4,8,16,24}. Additionally, DeepSquare is
trained with £ = 1. For both architectures we apply vari-
ous dropout probabilities pp € {0.1,0.3,0.5}. Each vari-
ant is trained 5 times and mean validation accuracy along
with its standard deviation is recorded for each variant. In
total we train 420 models with 84 different configurations.

"https://github.com/alexanderlerch/gtzan_key

Zhttps://github.com/GiantSteps/
giantsteps-mtg-key-dataset

3https://www.music-ir.org/mirex/wiki/2018:
Audio_Key_Detection
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Figure 2: Mean validation accuracies for the various net-
work configurations depending on their number of network
parameters. Only the best dropout configuration is shown.
Whiskers represent the standard deviation based on 5 runs.

For testing, we pick the dropout variant of each network
class that performed best on the validation set and evalu-
ate it against the test datasets. Again, we report the mean
accuracies for 5 runs along with their standard deviations.

3. RESULTS

Figure 2 shows mean validation accuracies of 5 runs for
each configuration, using their best performing dropout
probability pp. The dashed black line is the accuracy a
random classifier achieves, and the dotted black line shows
the accuracy of the algorithm that always outputs the class
that most often occurs in the validation set. With accu-
racy values slightly above random, ShallowSpec and
ShallowTemp perform worst of all architectures, when
used for the task they were not meant for. But when used
for the task they were designed for, both perform well. A
higher number of parameters leads to slightly better results.
When training ShallowTemp with k = 1 for the tempo
task, the network performed very poorly in one of the five
runs, which is the cause for the very large standard devi-
ation of 32.2 shown in Figure 2. The mean accuracy for
the 4 successful runs was 85.2%. When comparing with
the Deep architectures, we see that DeepTemp performs
just as well as ShallowTemp with £ > 1 on the tempo
task, and DeepSpec clearly outperforms ShallowSpec
on the key task. Surprisingly, the DeepSpec architec-
ture reaches fairly high accuracy values (up to 63%) on
the tempo task when increasing the model capacity via k,
even though it only has convolutional filters aligned with
the frequency axis. We can make a similar observation
for the DeepTemp architecture. It too reaches relatively
high accuracy values on the key task (up to 57%) when in-
creasing k. The unspecialized DeepSquare is by a small
margin the best performing architecture for the tempo task,
and comes in as a close second for key detection with
k > 1. But for k = 1, DeepSquare performs consid-
erably worse than DeepSpec with k = 2 (42% compared
to 64%), even though both have similar parameter counts
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of ca. 5000.

We selected the dropout variant for each architecture and
parameter setting with the best validation accuracy and ran
predictions on the test sets. Detailed results are shown
in Figure 3. The general picture is very similar to vali-
dation: Deep architectures tend to perform slightly better
than Shallow architectures on the tasks they are meant
for and Shallow architectures perform poorly on the task
they were not meant for. In fact, ShallowTemp performs
no better on GTzan Key and GiantSteps Key than the
random baseline. For both key and tempo DeepSquare
performs as well or better than any other architecture, ex-
cept when drastically reducing the model capacity for the
key task (k = 1). Then accuracy decreases well below
DeepSpec’s performance with similar parameter count:
33% compared to 50% for GTzanKey, and 21% com-
pared to 51% for GiantSteps Key.

To provide an absolute comparison, we chose the best
performing representative from each architecture (based
on validation accuracy, regardless of dropout configura-
tion or capacity), and calculated accuracies for each test
set (Table 4, incl. reference values from the literature). In
5 out of 7 test cases DeepSquare reaches the highest ac-
curacy score among our architectures. The other two are
reached by DeepTemp for GiantSteps Tempo and by
DeepsSpec for LMD Key. For both tasks we observe that
the margin by which the best performing network is bet-
ter than the second best for a given dataset differs consid-
erably. DeepSquare reaches an accuracy of 92.4% for
the Ballroom tempo dataset, which is 4.2 pp (percentage
points) better than the second best network (DeepTemp,
88.2%). The differences between best and second best
accuracy are considerably lower for the other datasets:
1.7 pp (LMD Tempo), 1.6 pp (GTzan Tempo), and 0.6 pp
(GiantSteps Tempo). For the key task, DeepSquare
reaches an accuracy of 49.9% on GTzanKey, which is
5.1 pp better than the second best network (DeepSpec,
44.8%), while the differences between best and second
best for the other datasets are 3.1 pp (GiantSteps Key),
and 2.4 pp (LMD Key).

4. DISCUSSION

The results show that simple shallow networks with axis-
aligned, directional filters can perform well on both the
key and tempo task. Conceptually, both tasks are simi-
lar enough that virtually the same architecture can be used
for either one, as long as the input representation and the
filter direction are appropriate. Using the wrong filter di-
rection, e.g., ShallowSpec for the tempo task, leads to
very poor results close to the random baseline. Together,
this strongly supports the hypothesis that the Shallow ar-
chitecture indeed learns what we want it to learn, i.e., pitch
patterns for key detection or rhythmic patterns for tempo
detection, but not both.

This stands in contrast to the standard VGG-style net-
work (DeepSquare). Because of its square filters, we
cannot be certain what it learns, just by analyzing its static
architecture. It is designed to pick up on anything that
could provide a hint towards correct classification, be it
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Figure 3: Mean test accuracies for various network con-
figurations and datasets depending on their number of net-
work parameters. Whiskers represent one standard devia-
tion based on 5 runs. Dropout was chosen based on perfor-
mance during validation.

rhythm and pitch patterns, or timbral properties like instru-
mentation. And indeed our experiment shows that without
being specialized for either key or tempo estimation in any
way, DeepSquare works very well for both tasks. In
Section 3 we noted that DeepSquare achieved the great-
est tempo accuracy for Ballroom and the greatest key ac-
curacy for GTzan Key by a considerable margin of 4.2 pp



Architecture GS GT LMD BR GS GT LMD
ShallowTemp 86.51s 60.3 27 94010 87.923 1.7 04 4.9 07 11.0 37
DeepTemp  88.7 06 63.106 94507 88.224 46.8 43 38424  60.7 04
ShallowSpec 4519 11.513 9.4 21 16.7 57 50.8 33 43814  67.109
DeepSpec  49.62s 40214  73.024  59.6 9.1 55.4 27 44820 71302
DeepSquare 88.113 64.7 2.1 96.204 92417 58.5 39 49.9:0 68.925
Literature 82.5[3] 78.3 [29] — 92.0 [3] 679 [2] ~45[28] —
(a) Tempo (b) Key

Table 4: Mean estimation accuracies of 5 runs with standard deviation (small font). Best results per test are set in bold.
Model variants chosen based on validation performance (ignoring parameter count). GS=GiantSteps, GT=GTzan,

LMD=LMD, BR=Ballroom.

and 5.1 pp, respectively. This margin may be a result of
the fact that key and tempo are related to genre [34-37].
Specifically, in Ballroom there is a strong correlation
between genre and tempo, and GTzan Key is the key test
set with the greatest genre diversity and therefore stands
to benefit the most from an architecture that can distin-
guish genres based on both temporal and timbral proper-
ties. Consequently, square filters should improve accuracy
results for these datasets. But this does not conclusively
show that only the network’s ability to measure specifically
key or tempo is reflected by these results, as the system is
by design vulnerable to confounds [15]. By using direc-
tional filters in DeepSpec and DeepTemp we intention-
ally limit the standard VGG-style architecture in a way that
seeks to lessen this vulnerability as well as reduce the num-
ber of required parameters.

The results for DeepSpec and DeepTemp show that
a VGG-style network with directional filters can perform
very well on either task. For networks with a large num-
ber of parameters test results are similar to DeepSquare,
with a tendency towards a slightly worse performance. In-
terestingly, the situation is different for low-capacity net-
works with & = 2 for DeepSpec, and k = 1 for
DeepSquare. Here, DeepSpec clearly outperforms
DeepSquare, even though the parameter count is similar.
Perhaps with ca. 5000 parameters DeepSquare simply
does not have enough capacity aligned in the right direc-
tion to still perform well on the task.

The fact that DeepSpec and DeepTemp with k£ = 2
perform very poorly on the tasks they are not meant for,
supports the hypothesis that they only learn the intended
features for the tasks they are meant for. For & > 2 we can-
not be quite as certain, as both architectures reach higher
accuracy scores on the tasks they were not meant for for
greater values of k. We believe this effect may be a result
of the 2 x 2 max pooling in the DeepMod modules.

5. CONCLUSIONS

We have shown that shallow, signal processing-inspired
CNN architectures using directional filters can be used suc-
cessfully for both tempo and key detection. By using shal-
low networks designed for key detection on the tempo task
and vice versa, we were able to experimentally support

the hypothesis that these networks are incapable of match-
ing information from the domain they were not meant for,
which would make them less susceptible to confounds.

We further demonstrated that a standard VGG-style ar-
chitecture can be used for tempo estimation, as it has been
shown before for key detection [2]. By replacing square
filters with directional filters, we derived a musically mo-
tivated, directional VGG-variant that performs similarly
well as the original one, but is less vulnerable to con-
founds, especially when used for key detection with low
capacity models. In such scenarios we were also able
to observe efficiency gains, i.e., better performance than
the standard VGG-style network with similar parameter
counts.

Additional Material

Code to recreate models and reproduce the reported
results can be found at https://github.com/
hendriks73/directional_cnns.
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