
Melody Identification in Standard MIDI Files

Zheng Jiang
Carnegie Mellon University

zjiang1@andrew.cmu.edu

Roger B. Dannenberg
Carnegie Mellon University

rbd@cs.cmu.edu

ABSTRACT

Melody identification is an important early step in mu-
sic analysis. This paper presents a tool to identify the
melody in each measure of a Standard MIDI File. We
also share an open dataset of manually labeled music for
researchers. We use a Bayesian maximum-likelihood ap-
proach and dynamic programming as the basis of our work.
We have trained parameters on data sampled from the mil-
lion song dataset [1, 2] and tested on a dataset including
1703 measures of music from different genres. Our al-
gorithm achieves an overall accuracy of 89% in the test
dataset. We compare our results to previous work.

1. INTRODUCTION

When we listen to a piece of music, the melody is usually
the first thing that catches our attention. Therefore, the
identification of melody is one of the most important ele-
ments of music analysis. Melody is commonly understood
to be a prominent linear sequence of pitches, usually higher
than harmonizing and bass pitches. The concept of melody
resists formalization, making melody identification an in-
teresting music analysis task. Melody is used to identify
songs. Often, other elements such as harmony and rhythm
are best understood in relation to melody.

Many music applications depend on melody, including
Query-by-Humming systems, music cover song identifi-
cation, emotion detection [3], and expressive performance
rendering. Many efforts in automatic composition could
benefit from training data consisting of isolated melodies.

There has been a lot of research on extracting melody
from audio [4]. The problem is generally easier for MIDI
than audio because at least notes are already identified and
separated. However, compared to audio, there seems to be
less research on melody extraction. Most of the research on
MIDI melody is on channel-level identification. This paper
will propose an algorithm combining Bayesian probability
models and dynamic programming to extract melody at the
measure level.

2. RELATED WORK

In the field of symbolic files, Skyline is a very simple al-
gorithm proposed by Uitdenbogerd [5]. In brief, the idea

Copyright: c© 2019 Zheng Jiang et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

of this method is to pick the highest pitch at any moment
as belonging to the melody. Chai and Vercoe offer an en-
hanced version of this approach [6]. In pop music, we ob-
serve that there are often accompaniment notes above the
melody line, leading to failure of the Skyline algorithms.
Uitdenbogerd presents three more methods [4]: 1) Top
Channel (choose the channel with the highest mean pitch),
2) Entropy Channel (choose the channel with the highest
entropy), and 3) Entropy Part (segment first, then use En-
tropy Channel). Shan [7] proposed using greatest volume
(MIDI velocity) because melody is typically emphasized
through dynamics. Li et al. identify melodies by finding
common sequences in multiple MIDI files, but this obvi-
ously requires multiple versions of songs [8]. Li, Yang,
and Chen [9] use a Neural Network and features such as
chord rate, pronunciation rate, average note pitch, instru-
ment, etc., trained on 800 songs to estimate the likelihood
that a channel is the melody channel. Velusamy, et al. [10]
use a similar approach, but prune notes that do not satisfy
certain heuristics and use a hand-crafted linear model for
ranking channels [9]. Rizo, et al [11] introduces an algo-
rithm to identify the track that contains the melody using
statistical properties of the musical content and machine
learning techniques.

All of these algorithms assume that the melody appears
on one and only one channel, so the problem is always to
select one of up to 16 channels as the melody channel. De-
pending on the data, this can be a frequent cause of failure,
since the melody can be expressed by different instruments
in different channels at different times. An interesting ap-
proach is Tunerank [12], which groups and labels notes ac-
cording to harmony and dissonance with other notes, pitch
intervals between consecutive notes, and instrumentation,
without assuming the melody is in only one channel.

Previous work is hard to evaluate based on publications,
with accuracy reports ranging from 60% to 97%, no la-
beled public datasets, and few shared implementations.
The properties of music arrangements and orchestrations
in MIDI files can cause many problems. The simplest case,
often assumed in the literature, is that the melody appears
in one and only one channel. At least four more com-
plex conditions are often found: 1) The melody is some-
times played in unison or octaves in another channel, 2) the
melody switches from one instrument (channel) to another
from one phrase or repetition to another, 3) the melody is
fragmented across channels even within a single measure
(this happens but seems to be rare), and 4) there are multi-
ple overlapping melodies as in counterpoint, rounds, etc.

mailto:zjiang1@andrew.cmu.edu
mailto:rbd@cs.cmu.edu
http://creativecommons.org/licenses/by/3.0/

3. DATASET

In most related work, published links to datasets have ex-
pired, so we collected and manually labeled a new dataset
which contains the training data of 5823 measures in 51
songs and test data of 1703 measures in 22 songs. For
each song in the training data, the melody is mostly all on
one channel, which is labeled as such. (This made labeling
much easier, but we had to reject files where the melody
appeared significantly in multiple channels or there is no
melody at all.) In the test data, the melody is not con-
strained to a single channel, and each measure of the song
is labeled with the channel that contains the melody. Mea-
sure boundaries are based on tempo and time signature
information in the MIDI file. The MIDI files are drawn
from songs in the Lakh dataset [1]. This collection con-
tains MIDI files that are matched to a subset of files in the
million song dataset [2]. We used tags there to limit our
selection to pop songs.

The test data is collecting from Chinese, Japanese, and
American pop songs. We specifically chose popular music
because melody is usually present and there is usually a
single melody. In addition, we hope to use this research in
learning about melody structure in popular music.

It might be noted that there are many high quality MIDI
files of piano music. Since all piano notes are typically
on one channel, this can make the melody identification
or separation a more challenging problem, and different
techniques are required. We assume that in our data, once
the channel containing the melody is identified, it is fairly
easy to obtain the melody. Either the melody is the only
thing present in the channel, or the melody is harmonized,
and the melody is obtained by removing the lower notes
using the Skyline algorithm.

4. ALGORITHM

Our problem consists of labeling each measure of a song
with the channel that contains the melody. (It would be
useful also to allow non-labels, or nil, indicating there is
no melody, but our study ignores this option.) The algo-
rithm begins with a Bayesian model to estimate Mm,c,
the probability that channel c in measure m contains the
melody. The estimation uses features that are assumed to
be jointly normally distributed and independent. Features
are calculated from the content of each channel, consid-
ering the measure itself and N previous and subsequent
measures, with N ∈ 0, 1, In all of our experiments, we
assume that melody never appears on channel 10, which is
used for drums in General MIDI.

Although we could stop there and report the most likely
channel in each measure,

cm = argmax
c

Mm,c (1)

this does not work well in practice. There are many
cases where a measure of accompaniment, counter-melody
or bass appears to be more “melody-like” than the true
melody. (For example, the melody could simply be a
whole note in some measures.) However, it is rare for

the melody to switch from one channel to another because
typically the melody is played by one instrument on one
channel. Channel switches are only likely to occur when
the melody is repeated or on major phrase boundaries.

We can consider the melody channel for each measure,
cm, as a sequence of hidden states and per-measure prob-
abilities as observations. We wish to find the most likely
overall sequence cm according to the per-measure prob-
abilities, and taking into account a penalty for switching
channels from one measure to the next. We model the
probability of the hidden state sequence cm as:

P (cm) =
∏
m

Mm,cmScm−1,cm (2)

where Scm−1,cm = 1 if there is no change in the channel
(cm−1 = cm), and Scm−1,cm is some penalty less than one
if there is a channel change (cm−1 6= cm). Thus, chan-
nel switches are allowed from any measure to the next, but
channel switches are considered unlikely, and any label-
ing that switches channels frequently is considered highly
unlikely.

The parameters of this model must be learned, including:
statistics for features used to estimate Mm,c, the best fea-
ture set, the number of neighboring measures N to use in
computing features, and the penalty S for changing chan-
nels. We select the feature set and compute feature statis-
tics using our training dataset, and we evaluate their per-
formance and sensitivity to N and S using the test dataset.

4.1 Bayesian Probability Model

The probability of melody given a set of features is repre-
sented by Equation 3, where C0 is the condition that the
melody is present, C1 indicates the melody is not present,
xi are feature values, and n is the number of real-valued
features. The details of features will be discussed in a later
paragraph.

P (C0|x1, . . . , xn) (3)

By Bayes’ theorem, this conditional probability can be
rewritten as Equation 4.

P (C0|x1, . . . , xn) =
P (C0)P (x1, . . . , xn|C0)

P (x1, . . . , xn)
(4)

With the assumption of independence for each feature, we
can rewrite this as Equation 5:

P (C0|x1, . . . , xn) =
1

Z
P (C0)

n∏
i=1

P (xi|C0) (5)

where Z is:

Z = P (x1, . . . , xn) =

1∑
k=0

(P (Ck)

n∏
i=1

P (xi|Ck)) (6)

Our features xi are continuous values. Because we have
limited training data, we adopt a Naive Bayes approach
and assume they are independent and distributed according

to a Gaussian distribution as in Equation 7. Under this as-
sumption, we can simply collect feature statistics µi,k and
σi,k from training data to estimate the probability model.

P (xi = v|Ck) =
1√

2πσ2
i,k

e
−

(v−µi,k)2

2σ2
i,k (7)

We now describe the details of features, which
are note density, vel mean, vel std, pitch mean,
pitch std, IOI mean, and IOI std:

4.1.1 Note Density

The note density is the sum of all note durations divided
by the total length of the music (Equation 8). A melody
without rests has a note density of 1, a rest has note density
of 0, a sequence of triads without rests has a note density
of 3, etc.

note density =
Σnotenote.dur
total length

(8)

4.1.2 Velocity

We take the mean and standard deviation of velocity
(Equations 9 and 10).

vel mean =
ΣN

i=1notei.vel
N

(9)

vel std =

√
1

N − 1
ΣN

i=1(notei.vel− vel mean)2 (10)

4.1.3 Pitch

We take the mean and standard deviation of pitch (Equa-
tions 11 and 12).

pitch mean =
ΣN

i=1notei.pitch
N

(11)

pitch std =

√
1

N − 1
ΣN

i=1(pitchi.vel− pitch mean)2

(12)

4.1.4 Inter-Onset Interval

The Inter-Onset Interval, or IOI, means the interval be-
tween onsets of successive notes. Considering that orna-
ments and chords may introduce a very short IOIs, we set
a window of 75 ms, and when two note onsets are within
that window, we treat them as a single onset [13]. IOI cal-
culation is described in detail in Algorithm 1.

4.2 Training data

We compute features for each measure and channel of
the training data. For feature selection, we use cross-
validation, dividing the training songs into 5 groups, hold-
ing out each group and estimating µi,k and σi,k from the
remaining training data, and evaluating the resulting model
by counting the number of measures where the melody
channel is judged most likely by the model. We take the
average result over all five groups.

Result: The mean and standard deviation of a list of
notes in onset-time order

stats is an object that implements the calculation of
mean and standard deviation;

note[i] is the ith note;
N is the number of notes;
i← 0;
while i < N do

j ← i+ 1;
while (j < N) ∧ (note[j].on time− note[j −
1].on time) < 0.075 do
j ← j + 1;

end
if j < N then

IOI ← note[j].on time− note[i].on time;
stats.add point(IOI);

end
i← j;

end
IOI mean← stats.get mean();
IOI std← stats.get std();

Algorithm 1: IOI Feature Calculation

After doing this for every combination of features (7 fea-
tures, thus 127 combinations), for various values of N (the
maximum distance to neighboring measures to use in fea-
ture calculation), we determine the features that produce
the best result for each value of N .

We then re-estimate the probability model using all of the
training data. In principle, we should also use the training
data to learn the best window size N and the best penalty
S, but in our training data, melodies are all in one chan-
nel, so the ideal value of N for this data should be large,
and the ideal S should be zero (highest penalty) to prevent
the melody from changing channels. Instead, we will de-
termine N and S from our test data, where every measure
is labeled as melody or not, and we will report how these
parameters effect accuracy using the test dataset.

4.3 Melodic probability

To prepare for the dynamic programming step, we com-
pute Mm,c, which is the natural log of the probability of
melody in channel c at measure m. (The feature values are
different for each combination of m and c.) In the next
step, note that if we find the labels with the greatest sum of
log probabilities, it is equivalent to finding the labels with
the greatest product of probabilities. Logarithms are used
to avoid numerical underflow.

4.4 Dynamic Programming

We use dynamic programming to select the channel con-
taining the melody in each measure. Algorithm 2 shows
how the assignment of channels maximizes the sum of
Mm,c values adjusted by subtracting SP = − log(S)
each time the melody changes channels. The backtrack-
ing step is not shown since it is standard. 1

1 https://en.wikipedia.org/wiki/Viterbi algorithm

Result: For each measure, determine the channel
containing the melody.

N is the number of measures, indexed from 0 to N − 1;
C is the number of channels, indexed from 0 to C − 1;
SP is channel switch penalty, a parameter; SP = -ln(S);
Am,c is the accumulated score for measure m and

channel c;
Bm,c stores the optimal channel number of previous

measure;
Mm,c tells how melodic is channel c in measure m;
for i in [0 . . . C) do

A0,i ←M0,i;
end
for m in [0 . . . N) do

for c in [0 . . . C) do
x← Am−1,c + Mm,c;
Bm,c = c;
for i in [0 . . . C) do

y ← Am−1,i + Mm,c − SP ;
if c 6= i ∧ y > x then

x← y;
Bm,c ← i;

end
end
Am,c ← x;

end
end

Algorithm 2: Dynamic Programming

5. EXPERIMENTS AND RESULTS

5.1 Training

We tried different combinations of features, and the re-
sults are shown in Table 1 for windows with 5 measures
(N = 2). The top 5 feature sets are shown along with
the mean and standard deviation of accuracy across 5-fold
cross-validation. Differences among the top feature sets
are minimal. We use all features except velocity standard
deviation.

Table 2 shows the results using each feature individually
for 5-measure windows. This shows that all features offer
some information (random guessing would be 1/15 or less
than 7% correct), but no single feature works nearly as well
as the best combination.

If we assume the melody appears in only one channel,
which is mostly the case for this training dataset, we can
consider the measure-by-measure melody channel results
as votes, picking the channel with the majority of votes as
the melody channel. Our best feature set (all but veloc-
ity standard deviation) gives an accuracy of 96% (2 errors
out of 51 songs), using 5-fold cross-validation. In the next
section, we relax the assumption that the melody appears
in only one channel.

5.2 Testing

Our test dataset labels each measure with a set of channels
containing melody. In measures with no melody, this is
the empty set. In some measures, the melody is duplicated

nd pm ps im is vm vs mean std
1 1 1 1 1 1 0 72.40% 7.20%
1 1 0 1 1 1 0 71.60% 7.06%
1 1 1 1 1 1 1 71.40% 8.26%
1 1 1 1 0 1 0 71.40% 7.70%
1 1 1 1 0 1 1 71.00% 8.83%

Table 1. Mean and standard deviation of accuracy in 5-
fold cross validation using the top 5 feature sets, win-
dow size = 5. Here, nd means note density, pm means
pitch mean, ps means pitch std, im means IOI mean,
is means IOI std, vm means vel mean, and vs means
vel std.

nd pm ps im is vm vs mean std
1 0 0 0 0 0 0 45.80% 7.22%
0 1 0 0 0 0 0 44.60% 8.11%
0 0 1 0 0 0 0 35.80% 6.50%
0 0 0 1 0 0 0 31.00% 2.55%
0 0 0 0 1 0 0 30.40% 5.64%
0 0 0 0 0 1 0 32.00% 5.87%
0 0 0 0 0 0 1 20.60% 4.10%

Table 2. Mean and standard deviation of accuracy in 5-fold
cross validation using individual features, window size = 5

in different channels, so the label can can contain more
than one channel. Note that if we can identify one channel
containing the melody, it is simple to search for copies in
the other melodies. Our algorithm labels every measure
with exactly one melody channel. We consider the output
to be correct either if it is in the set of true melody channels
according to our manual labels, or if the label is the empty
set. Typically, the empty set (no melody label) appears
in introductions, endings, and measures where the melody
channel rests. In these cases (approximately 12% of all
measures), there is no clearly correct answer, so we will
not include that in the test.

We evaluated accuracy on the test dataset with many val-
ues of N and SP . For each value of N , we used the best
feature set as determined from the training data and then
evaluated the system with different values of SP . The re-
sults are shown in Figure 1.

Since N and SP are optimized on the test dataset to ob-
tain a best accuracy of 89.15%, there is some risk of over-
fitting parameters to the test data. Given more labeled data,
we would have used a different dataset to select N and
SP , and then we could evaluate the entire system on the
test dataset. Instead, we argue that the system is not very
sensitive to N or SP , so overfitting is unlikely. Figure
2 shows how accuracy is affected by varying the window
size using an optimal value of SP = 36 (again, the win-
dow includes the measure ±N measures, so the window
size is 2N+1). This figure shows that 5-measure windows
worked the best, but windows up to about 15 measures also
work well, with just a few percent variation in accuracy.

Figure 3 shows how the accuracy is affected by varying
SP , the switch penalty, using the optimal value of N = 2.

Figure 1. Accuracy for different values of window size and
switch penalty.

Figure 2. Accuracy on the test dataset vs. Window Size
(= 1 + 2N) for Switch Penalty = 36.

The best performance is obtained with SP between 30 and
38, but any value from 2 to 38 will achieve performance
within a few percent of the best. Since both graphs are
fairly flat around the best values of N and SP , the exact
values of these parameters are not critical for good per-
formance. In fact, we would expect the best values may
depend upon style, genre, and other factors.

From the results, we can observe that the increase of win-
dow size helps the performance. The highest accuracy goes
from 58.00% to 89.15% when the window size grows from
1 to 5. However, accuracy does not continue to increase for
even larger windows. We believe the size of 5 measures is
large enough to obtain some meaningful statistical features
yet small enough to register when the melody has switched
channels. In the next section, we analyze some specific ex-
amples of success and failure. We also see that the switch

Figure 3. Accuracy on the test dataset vs. Switch Penalty
with Window Size = 5. The highest accuracy is 89.15%
using any Switch Penalty ∈ {30, 32, . . . 38}.

penalty matters. When we set the penalty to zero, we get
the locally best choice of melody channel at each measure,
independent of other measures, but it seems clear that this
“locally best, indepenent” policy is not particularly good,
and this is why we introduced the Viterbi step to our algo-
rithm. On the other hand, when the penalty is very large,
we force all measures to be labeled with the same channel.
This is not a good policy either, with at best 71.24% accu-
racy. The results show that our Viterbi step is effective in
using context to improve melody identification.

6. ANALYSIS

To better understand our approach, we analyzed some
songs in our test dataset.

6.1 A Successful Sample

In most of the cases, this algorithm works well. For exam-
ple, the figure 4 shows a clip from the popular song “Hotel
California.” In the figure, the melody is labeled by our al-
gorithm in red (at the top) and other notes are shown in yel-
low. Notice that this melody is not particularly “melodic”
in that it only uses two pitches and there is a lot of repeti-
tion. This is one illustration of the need for multiple fea-
tures and statistical methods. The features for the melody
channel have a higher likelihood according to our learned
probabilistic model, and the melody is correctly identified.

6.2 Failed Samples

A failure case is shown in Figure 5. Here, the detected
melody is shown in red at the top of the figure. The same
(red) channel actually contained the melody in the imme-
diately preceding channels, but at this point the melody
switched to another channel, shown below in yellow. (In
the figure, the lower melody is visually separated for clar-
ity, but both channels actually occupy the same pitch
range.) Evidently, the algorithm continued to label the top

Figure 4. The melody detected in the song “Hotel Califor-
nia.”

(red) channel as melody to avoid the switch penalty that
would be required to label the melody correctly. In fact,
the true (yellow) melody appeared earlier in the top (red)
channel, so perhaps a higher-level analysis of music struc-
ture would also be useful for melody identification and dis-
ambiguation.

Figure 5. The algorithm identified the top (red) channel
as melody of “Being,” but the correct melody is shown in
yellow at the bottom.

Another song in our dataset is “Ali Mountain.” In this
piece, at measure 12, the melody is split across two dif-
ferent channels, represented in red (darker) and yellow
(lighter) in Figure 6. Taken together, the combined chan-
nels would be judged to be very melodic. However, when
we consider the channels separately, it is hard to hear
whether either is part of a melody, and our algorithm does
not rate either channel highly. Since we assume that the
melody will be played by one and only one channel within
a measure, the melody is not identified in this test case.

Figure 6. Two channels ensemble the melody

7. CONCLUSION

In this paper, we contributed a novel algorithm to detect
the melody channel for each measure in a MIDI file. We
utilize a Bayesian probability model to estimate the prob-
ability that the melody is on a particular channel in each
measure. We then use dynamic programming to find the
most likely channel for melody in each measure consider-
ing that switching channels from measure to measure is un-
likely. We obtained an overall accuracy of 89% on our test
dataset, which seems to compare favorably to most other
results in the literature. The lack of a large shared dataset
prohibits a detailed comparison.

Our dataset, including Standard MIDI Files, melody la-
bels, associated software, and documentation are available
at the following website:
http://www.cs.cmu.edu/∼music/data/melody-
identification.

8. FUTURE WORK

We believe further improvements could be made by study-
ing failures. With bootstrapping techniques, it might be
possible to obtain much more training data and learn
note-by-note melody identification, which would solve the
problem of melodic phrases split across two or more chan-
nels. Our current dataset is relatively small, so collecting a
larger dataset could be beneficial for tuning this algorithm
and developing others. With larger datasets, deep learn-
ing and other techniques might be enabled. Perhaps boot-
strapping (or semi-supervised learning) techniques could
be used starting with the present algorithm to label a larger
dataset automatically. We also believe that music struc-
ture can play an important role in melody identification.
Melodies are likely to be longer sequences that are re-
peated and/or transposed, and these non-local properties
might help to distinguish “true” melodies as perceived by
human listeners, even when the melodies are not particu-
larly “melodic” in terms of local features.

Acknowledgments

In this work, we would like to acknowledge Shuqi Dai for
providing some test samples in our dataset.

9. REFERENCES

[1] C. Raffel, Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching. Columbia University, 2016.

[2] B.-M. Thierry, P. E. Daniel, W. Brian, and P. Lamere,
“The million song dataset,” in ISMIR 2011: Proc.
the 12th InternationalSociety for Music Information
Retrieval Conference, October 24–28, 2011, Miami,
Florida. University of Miami, 2011, pp. 591–596.

[3] Z. Wei, L. Xiaoli, and L. Yang, “Extraction and eval-
uation model for the basic characteristics of midi file
music,” in Control and Decision Conference (2014
CCDC), The 26th Chinese. IEEE, 2014, pp. 2083–
2087.

http://www.cs.cmu.edu/~music/data/melody-identification
http://www.cs.cmu.edu/~music/data/melody-identification

[4] C. Isikhan and G. Ozcan, “A survey of melody ex-
traction techniques for music information retrieval,”
in Proceedings of 4th Conference on Interdisciplinary
Musicology (SIM08), Thessaloniki, Greece, 2008.

[5] A. Uitdenbogerd and J. Zobel, “Melodic matching
techniques for large music databases,” in Proceedings
of the seventh ACM international conference on Multi-
media (Part 1). ACM, 1999, pp. 57–66.

[6] W. Chai and B. Vercoe, “Melody retrieval on the web,”
in Multimedia Computing and Networking 2002, vol.
4673. International Society for Optics and Photonics,
2001, pp. 226–242.

[7] M.-K. Shan and F.-F. Kuo, “Music style mining and
classification by melody,” IEICE TRANSACTIONS on
Information and Systems, vol. 86, no. 3, pp. 655–659,
2003.

[8] L. Li, C. Junwei, W. Lei, and M. Yan, “Melody extrac-
tion from polyphonic midi files based on melody simi-
larity,” in Information Science and Engineering, 2008.
ISISE’08. International Symposium on, vol. 2. IEEE,
2008, pp. 232–235.

[9] J. Li, X. Yang, and Q. Chen, “Midi melody extrac-
tion based on improved neural network,” in Machine
Learning and Cybernetics, 2009 International Confer-
ence on, vol. 2. IEEE, 2009, pp. 1133–1138.

[10] S. Velusamy, B. Thoshkahna, and K. Ramakrishnan,
“A novel melody line identification algorithm for poly-
phonic midi music,” in International Conference on
Multimedia Modeling. Springer, 2007, pp. 248–257.

[11] D. Rizo, P. J. P. De León, C. Pérez-Sancho, A. Per-
tusa, and J. M. I. Quereda, “A pattern recognition ap-
proach for melody track selection in midi files.” in IS-
MIR, 2006, pp. 61–66.

[12] H. Zhao and Z. Qin, “Tunerank model for main
melody extraction from multi-part musical scores,”
in Intelligent Human-Machine Systems and Cybernet-
ics (IHMSC), 2014 Sixth International Conference on,
vol. 2. IEEE, 2014, pp. 176–180.

[13] J. Bloch and R. B. Dannenberg, “Real-time accompa-
niment of polyphonic keyboard performance,” in Pro-
ceedings of the 1985 International Computer Music
Conference, 1985, pp. 279–290.

	 1. Introduction
	 2. Related Work
	 3. Dataset
	 4. Algorithm
	4.1 Bayesian Probability Model
	4.1.1 Note Density
	4.1.2 Velocity
	4.1.3 Pitch
	4.1.4 Inter-Onset Interval

	4.2 Training data
	4.3 Melodic probability
	4.4 Dynamic Programming

	 5. Experiments and Results
	5.1 Training
	5.2 Testing

	 6. Analysis
	6.1 A Successful Sample
	6.2 Failed Samples

	 7. Conclusion
	 8. Future Work
	 9. References

