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ABSTRACT

It is impossible for one temperament to achieve optimally
both of consonance and modulation. The dissonance level
has been calculated by the ratio of two pitch frequencies,
however in the current homophonic music, the level should
be measured by chords, especially by triads. In this re-
search, we propose to quantify them as Dissonance Index
of Triads (DIT). We select eight well-known temperaments
and calculate seven diatonic chords in 12 keys and compare
the weighted average and standard deviation to quantify
the consonance, and then we visualize our experimental re-
sults in a two-dimensional chart to compare the trade-offs
between consonance and modulation.

1. INTRODUCTION

Nowadays, 12-tone equal temperament is prevalent and
other temperaments has fallen to only historical and math-
ematical interests. However, even now in the actual perfor-
mance, string and wind instruments are played in an ad hoc
adjustment of pitches unless accompanied by keyboard in-
struments. In this age, those electronic instruments ease
us in using any scale more freely. Then, our motivation in
this paper is to give quantitative understanding to the dis-
sonance level in various temperament in terms of triads.

The difference of temperaments has been often mentioned
by the ratio of two pitch frequencies and such web site as
Pianoteq 1 provides us a very convincing interface to ex-
perience the difference of temperaments; however, there
were no mathematical formulation to evaluate the conso-
nance and modulation 2 of a chord.

Consonance and dissonance are ambiguous psychologi-
cal notions. The purpose of this research is to explore the
mathematical model of Dissonance Index of Triads (DIT).
In 1863, Helmholtz [1] proposed the mathematical model
of consonance and dissonance in tones in terms of beats
and roughness. In 1965, Plomp and Levelt [2] defined the
dissonance curve between two pure tones. Later, the math-
ematical formula of the curve has been improved, and Vas-
silakis [3] claimed that the formula he proposed had been
believed to be most reliable; and thus, we employ it also in
this paper, though adding the effect of overtones.

1 https://www.pianoteq.com/
2 In this paper, the modulation means a key transposition.
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Ogata [4] has proposed the idea of consonance value among
chords, calculating the consonance value of each two tones
in the triads and adding them up, and then drew a 3D dis-
sonance curve of the chords. Also, Cook [5] showed the
acoustical properties of triads, claiming the perception of
harmony is not simply a sum of inner consonance. In this
research, we revise the Ogata’s calculation and formalize
the dissonance level in a more rigorous way.

This paper is organized as follows. In the following sec-
tion, we show preliminaries including the introduction of
various temperaments. Thereafter, we propose our formal-
ization and show its visualization. Then, we analyze the
results, and finally conclude.

2. PRELIMINARIES

2.1 Scale and Temperaments

A set of notes employed in a music piece is, when arranged
in a pitch order in an octave, is called a scale. The ratio of
frequency of two pitches is fixed by natural science disci-
plines such as physical science, acoustics, and psychology,
among which mathematics plays the most important role,
and one fixed series of ratios in a scale gives the notion of
temperament.

Pythagoras in ancient Greece discovered that the perfect
fifth interval with the frequency ratio of 3:2 as the most
consonant, next to the octave of 2:1, around 550 BC [6].
The Sanfen Sunyi-fa by Jing Fang in China (BC77–BC37)
is considered to have invented the same temperament with
Pythagorean tuning [7].

Since then, musicologists have been constantly exploring
how to solve the problem of Pythagorean comma, that is
the error which slightly exceeds the octave when the 12th
tone is introduced by multiples of 3/2. If we perempto-
rily regard the 12th locates at the octave, the interval be-
tween the 11th and the 12th becomes narrower than the
other fifths. In later years, Pythagoras pitch was amended
to place the narrow fifth, so called the wolf fifth 3 , between
G] and D] where the fifth is rarely used.

The ultimate temperament for consonance is the just in-
tonation, introducing the multiple by 5 in addition to 3/2,
where the ratio between the intervals can be expressed all
by small integers [8]. However, in contrast, the just intona-
tion is very clumsy in modulation. The scale evolved into
the mean-tone systems [9, 10], well-temperaments by An-
dreas Werckmeister (1645–1706) [11] or by Johann Philipp
Kirnberger (1721–1783) [12], and since then there exist
hundreds or even thousands of music temperaments.

3 It is named after the unpleasant sound like the roaring of wolves.
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C bD D bE E F #F G bA A bB B

Sanfen Sunyi-fa 1 37

211
9
8

39

214
81
64

311

217
729
512

3
2

212

38
27
16

215

310
243
128

Pythagorean Tuning 1 256
243

9
8

32
27

81
64

4
3

729
512

3
2

128
81

27
16

16
9

243
128

Just Intonation 1 16
15

9
8

6
5

5
4

4
3

45
32

3
2

8
5

5
3

16
9

15
8

Quarter-Comma Meantone 1 23

5
5
4

5
1
2

2
22

5
3
4

5
4

2

5
1
4

5
6
4

23 5
1
4

8
5

5
3
4

2
22

5
1
2

5
5
4

22

Conventional QC Meantone 1 5
7
4

24
5

1
2

2
22

5
3
4

5
4

2

5
1
4

5
6
4

23 5
1
4

52

24
5

3
4

2
22

5
1
2

5
5
4

22

Werckmeister 1 28

35
64
√
2

81
32
27

213 4√2
38

4
3

210

36
8 4√8
9

128
81

210 4√2
36

16
9

128 4√2
81

Kirnberger 1 135
128

9
8

32
27

5
4

4
3

45
32

3
2

128
81

3
√
5

4
16
9

15
8

Equal Temperament 1 2
1
12 2

2
12 2

3
12 2

4
12 2

5
12 2

6
12 2

7
12 2

8
12 2

9
12 2

10
12 2

11
12

Table 1: Ratios of Temperaments in Fractions

The equal temperament has been the product of compro-
mise, which systematically compensated the Pythagorean
comma, defining each half tone to be the 12th root of 2.
Then, the temperament perfectly eased the modulation, that
is, to enable us to change from one key to another freely,
and was applied to the tuning of most modern musical in-
struments around the world. But we can never say that
the equal temperament is satisfactory because it rejects the
original intention of the temperament, viz., the consonance
between intervals. Table 1 lists the frequency ratios of
some typical music temperaments introduced above.

2.2 Helmholtz’s Theory of Beats

In physics, the superposition of two simple sinusoidal waves
with similar but slightly different frequency will cause pe-
riodic fluctuation in strength through time. This phenomenon
is known to piano tuners as beats. Hermann Helmholtz [1]
concluded that dissonance is produced by the beats be-
tween two pure tones (without overtones) or between a pair
of partials of two complex sounds.

When the difference in frequency is small, the beats can
be easily heard. As the difference is increased to 20-30
Hz, the beats will create the impression like ‘jarring and
rough’ described by Helmholtz. Beyond this approximate
point, the beats gradually become too rapid to be identified
and the sensation of roughness disappears.

2.3 Dissonance Curve

In 1965, Plomp and Levelt confirmed Helmholtz’s hypoth-
esis by several experiments [2]. They plotted the disso-
nance curve and proposed the concept of critical band-
width. Note that though the sound produced by the mu-
sical instruments has a complex timbre this psychologi-
cal experiment employed only pure tones with the simplest
spectrum. The combined experimental results is shown in
Figure 1, and nowadays this result is widely accepted.

The figure shows the consonance/dissonance feeling when
the frequency is apart from the fixed base tone. The verti-
cal axis on the right side of the figure represents the degree

Figure 1: Dissonance Curve From a Fixed Tone to Another
Tone [2]

of dissonance, and the interval is from 0 to 1 from top to
bottom. The lower the vertical value is in this figure, the
more dissonant. The horizontal axis is the frequency dif-
ference between higher tone and the base tone, divided by
the value of the critical bandwidth. As the frequency dif-
ference gradually becomes larger, we can observe the re-
sult of the dissonance value d between the two pure tones
varying. The most dissonant position (d = 1) is said to be
about a quarter of the critical band.

When the frequency of the tone is too high or too low
to be heard by human ears, the identification of the tones
becomes not that easy. When the horizontal axis of the dis-
sonance curve only takes the frequency difference (without
divided by critical bandwidth), we need to draw many dif-
ferent graphs according to the difference of base tones.

2.4 Numerical Calculation of Dissonance in Two
Tones

Among various proposals [13–15] on the numerical cal-
culation of dissonance, Vassilakis suggested two principal
studies [16, 17], incorporating the notion of roughness [3].



Given a signal whose spectrum has two sinusoidal compo-
nents with frequencies f1, f2 and amplitudes v1, v2, where

fmin = min(f1, f2), fmax = max(f1, f2),
vmin = min(v1, v2), vmax = max(v1, v2),

the roughness (dissonance value) of d becomes:

d(f1, f2, v1, v2) = X0.1 · 0.5(Y 3.11) · Z (1)

in which

X = vmin · vmax

Y = 2vmin/(vmin + vmax)
Z = e−b1s(fmax−fmin) − e−b2s(fmax−fmin)

with b1 = 3.5, b2 = 5.75,

s =
0.24

s1fmin + s2
; s1 = 0.0207; s2 = 18.96.

Vassilakis has confirmed that his formula reliably and ef-
ficiently represents the perception of roughness and per-
forms better than the preceding formulae. Therefore, the
temperament evaluation model in this paper is made under
this function of dissonance curve.

We generalize the roughness value (1) to include multi-
ple, more than two sinusoidal partials as the sum of each
pair of two partials. Suppose a spectrum F with fundamen-
tal frequency f is a collection of n sinusoidal waves (or
partials) with frequencies a1f, a2f, ..., anf and amplitudes
v1, v2, ..., vn. Also, we assume that each tone contains
n overtones of [a1, a2, ..., an] = [1, 2, ..., n]. According
to [4], we also assume that v1, v2, ..., vn is a geometric pro-
gression with common ratio of 0.9; that is, v1, v2, ..., vn =
1, 0.9, 0.81, ..., 0.9n−1. So when two notes of F1 and F2

are played simultaneously, the dissonance value D(F1, F2)
between them is

D(F1, F2) =

n∑
i=1

n∑
j=1

d(if1, jf2, vi, vj) (2)

When F1 and F2 are at interval t and with the same am-
plitude (e.g. F2 = tF1), the transposed version of F can
be defined as tF with partials at tf, 2tf, ..., ntf and am-
plitudes v1, v2, ..., vn. The roughness DF (t) generated by
the spectrum F is defined in function (3) and the shape of
this function is shown in Figure 2. 4 This figure shows the
comparison from a base tone to its seven overtones.

DF (t) =

n∑
i=1

n∑
j=1

d(if, tjf, vi, vj), (3)

3. DISSONANCE INDEX OF TRIADS

Thus far, we have introduced the preceding works con-
cerning the dissonance value between the intervals. In this
section, we propose our new definition of the dissonance
value for triads. Given three tones with the ratio of inter-
vals 1 < t1 < t2, we add up the three values of (3) as
function (4) and draw Figure 3 based on this function.

4 The figure is a reproduction, appearing in [4].

Figure 2: Dissonance Value for Intervals, Dependent on
Base Frequency

Figure 3: 3D Representation of Interval Dissonance in Tri-
ads

DF (t1, t2) = DF (t1) +DF (t2) +Dt1F (
t2
t1
) (4)

where

DF (t1) =

n∑
i=1

n∑
j=1

d(if, jt1f, vi, vj),

DF (t2) =

n∑
i=1

n∑
j=1

d(if, jt2f, vi, vj),

Dt1F (
t2
t1
) =

n∑
i=1

n∑
j=1

d(it1f,
t2
t1
jf, vi, vj).

We have employed twelve major keys and twelve minor
keys, each of which includes seven triads on diatonic notes,
including three major triads, three minor triads, and one
diminished triad (vii◦). In this paper, we have omitted the
harmonic and melodic minor scales. Therefore, since a
pair of parallel keys consists of the same set of chords, we
take 12 group of chords as research objects to evaluate the
music temperaments.

In the first attempt, the average value of 12 group of chords
in each temperament are calculated with our dissonance
value model. According to the ratios in Table 1, we con-
sider the frequencies of an octave starting from the cen-
tral C, for three typical temperaments (Pythagorean tuning,
just intonation and equal temperament) as examples. The
results are shown in Figure 4.



Figure 4: Relative Dissonance of Chords in a Major Scale,
Compared to Equal Temperament

As we can see, even the equal temperament does not guar-
antee consistent values in different keys. The reason for
this is obviously due to the different frequencies of the base
pitches, resulting in different critical bandwidths. There-
fore, in this paper, we choose to preserve the frequency
ratios and to transpose the base pitch into a certain fixed
value F0. The adjusted model should no longer be called
the dissonance level but an index to compare the conso-
nance degree among different triads, and thus we call it the
Dissonance Index of Triads (DIT) (5), hereafter.

DIT (t1, t2) = DF0
(t1, t2) (5)

We set the frequency of F0 to 263Hz, that is an approxi-
mate frequency of the central C.

4. DIT IN TEMPERAMENTS

This chapter expounds the results of DIT values of triads
in different temperaments. According to Figure 2, this re-
search employs overtones upon the seven diatonic tones.
We fix the ratio of amplitudes to be a geometric progres-
sion with 0.9 as mentioned before.

4.1 The Weighted Chords in Each Key

Prior to the evaluation, we have given the following weights
[0.86 : 0.26 : 0.17 : 0.73 : 0.73 : 0.56 : 0] on each tri-
ads on the diatonic scale, based on the usage of the chords
in 1300 popular songs 5 after transposed to C-major. Note
that our objective here is to compare the average conso-
nant level of various chords in different keys, and not to
assess the human feeling; thus the transposition is a kind
of approximation. The average consonant level is shown
in Table 2, for each key and temperament.

For more intuitive and clear understanding, we compare
the DIT between two triads chosen from the two differ-
ent temperaments. In Figure 5, the horizontal axis of each
graph represents the keys while the vertical axis represents
the DIT value. Since the DIT value is adjusted from the
dissonance value, the lower the DIT value is the more con-
sonant the key is.

The comparison of the Sanfen Sunyi-fa and Pythagorean
tuning is shown in the upper-left graph in Figure 5. We can

5 https://www.hooktheory.com/theorytab/

see that because they share the same process of generation
except for the location of the wolf fifth, the difference of
DIT shifts in parallel. Similarly, the quarter-comma mean-
tone and the conventional quarter-comma mean-tone, shown
in the upper-right graph has the same property.

In the lower-left graph in Figure 5, we can hardly find the
big difference between the two well temperaments along
the horizontal trends. That is to say, the well temperaments
tend to change slightly between adjacent keys, trying to
distribute the dissonance reasonably to keep the balance,
and thus there are no peaks in dissonance. They also espe-
cially ensures some commonly used keys such as C-major,
D-major, F -major, and G-major, are in better consonance.

The lower-right graph in Figure 5shows the comparison
between the just intonation and the equal temperament. We
can see that the equal temperament presents a perfect hori-
zontal line, which proves that it will sound always the same
no matter what key it is. But, its DIT value is also rela-
tively higher with no keys in better consonance. The just
intonation has the lowest DIT value of all the results in a
few keys such as C and A[, but the line goes up and down
steeply and the dissonant keys are also obvious. We can
easily read in this figure that the equal temperament and
the just intonation are the two extremes in modulation and
consonance.

4.2 Consonance or Modulation

In accordance with the position of the wolf fifth or other
adjustments, there are also difference in what keys they
prefer. In fact, there is a difference in the degree of com-
monality of each key, which means we had better take
the weights of keys into consideration. A survey of “The
Most Popular Keys of All Music” 6 on SpotifyTM in 2005
showed the data in Table 3. Here, we put a major key and
its parallel key together because they share a common set
of the diatonic chords.

Taking both the weights of keys and the diatonic chords
into consideration, we visualize the balance between the
consonance and modulation of temperaments as in Table
4, which is plotted in Figure 6. The horizontal axis shows
the average DIT value with weights, which refers to the
consonance level of the temperament, while the vertical
axis represents the average standard deviation of chords
and represents the smoothness of modulation. The lower
the value is, the more easily the temperament can mod-
ulate. It is obvious that just intonation is outstanding at
consonance but worse in modulation, and equal tempera-
ment is the opposite, that is, the easiest in modulation but
the worst in consonance. Pythagorean tuning and Sanfen
Sunyi-fa are staying at a similar level on modulation, and
there are slight difference because of the weights in keys.

At last, the well-temperaments obtained a very good re-
sult; Kirnberger temperament does the best in consonance
than all the other temperaments except for just intonation,
and Werckmeister wins on modulation. Note that they
locate just near on the line linked by just intonation and

6 https://insights.spotify.com/us/2015/05/06/most-popular-keys-on-
spotify/



SS PT JI ET QM CQM Wm. Kb.

C 0.9407 0.9478 0.8366 0.9276 0.8598 0.8598 0.8861 0.8668
G 0.9478 0.9478 0.8514 0.9276 0.8598 0.8598 0.9084 0.8463
D 0.9478 0.9250 0.9008 0.9276 0.9120 0.8598 0.9251 0.8744
A 0.9478 0.8969 0.9811 0.9276 0.9926 0.8598 0.9261 0.9161
E 0.9478 0.8521 1.0003 0.9276 1.0365 0.9120 0.9325 0.9443
B 0.9478 0.8678 1.0151 0.9276 1.0544 0.9926 0.9385 0.9417
F] 0.9478 0.8956 0.9735 0.9276 1.0055 1.0365 0.9487 0.9435
C] 0.9250 0.9407 0.9215 0.9276 0.9382 1.0544 0.9478 0.9453
G] 0.8969 0.9478 0.8366 0.9276 0.8598 1.0055 0.9433 0.9485
D] 0.8521 0.9478 0.8514 0.9276 0.8598 0.9382 0.9321 0.9478
A] 0.8678 0.9478 0.8560 0.9276 0.8598 0.8598 0.9051 0.9380
F 0.8956 0.9478 0.8720 0.9276 0.8598 0.8598 0.8865 0.9096

Table 2: Average Consonant Level of Chords in Different Keys in Each Temperament

Mjor Keys Parallel Keys Total

C 10.20% a 4.80% 15.00%
G 10.70% e 4.20% 14.90%
D 8.70% b 4.20% 12.90%
A 6.10% f] 2.50% 8.60%
E 3.60% c] 2.10% 5.70%
B 2.60% g] 1.20% 3.80%
F] 2.70% d] 0.90% 3.60%
C] 6.00% a] 3.20% 9.20%
G] 4.30% f 3.00% 7.30%
D] 2.40% c 2.40% 4.80%
A] 3.50% g 2.60% 6.10%
F 5.30% d 2.60% 7.90%

Table 3: Usage of Keys in Popular Music

equal temperament, which implies that they are balanced
between the two criteria.

Here, we have to note that this graph is biased by the us-
age of chords found in SpotifyTM database, i.e., the usage
of chords are more inclined to that in the modern popu-
lar music. On the contrary, the mean-tone, dotted on the
upper-right corner in the figure, was invented to obtain the
clear resonance of the major third preferred in classicist
age. It is easily guessed that if we employ the database of
classical music the tendency would be different. The vari-
ety of distribution of dots in this space would surely reflect
the difference of music genre, and this is our future work.

5. DISCUSSION AND CONCLUSION

We have proposed an index to show the numerical conso-
nance level of triad, DIT, and have compared the differ-
ence of the level in various temperaments. Since chords on
a scale may have different significance, we have weighted
them by the number of appearance. The resultant differ-
ence has been visualized in various graphs.

Nowadays, we do not need to stick to the five-line staff
based on 12-tone equal temperament in composing music

Avg SD

Sanfen Sunyi-fa 0.9245 0.0446

Pythagorean Tuning 0.9277 0.0425

Just Intonation 0.8981 0.0868

Equal Temperament 0.9276 0.0000

Quarter-Comma Meantone 0.9154 0.0917

Conventional QC Meantone 0.9267 0.0972

Werckmeister 0.9227 0.0284

Kirnberger 0.9120 0.0491

Table 4: DIT Results (SD is the standard deviation)

since actual performance should tolerate micro-tones, out-
of-tune tones, portament, vibrating tunes, and so on. This
tendency would be more salient in computer music age in
future. It may be high time for us to reconsider traditional
temperaments, to give special savors in music or to escape
temporarily from the equal temperament, so that we should
know the concrete difference in temperaments.

Acknowledgments

This work is supported by JSPS kaken 16H01744.

References
[1] H. L. Helmholtz, On the Sensations of Tone as a Phisi-

ological Basis for the Theory of Music. Dover, 1954.

[2] R. Plomp and W. J. M. Levelt, “Tonal consonance and
critical bandwidth,” The journal of the Acoustical So-
ciety of America, vol. 38, no. 4, pp. 548–560, 1965.

[3] P. N. Vassilakis, “Perceptual and physical properties of
amplitude fluctuation and their musical significance,”
Ph.D. dissertation, University of California, Los Ange-
les, 2001.



Figure 5: Comparison of Temperaments in Keys versus DIT Values; (upper-left) Sanfen Sunyi-fa vs Pythagorean, (upper-
right) two mean-tones, (lower-left) two well temepraments, and (lower-right) the just intonation and the equal temperament

Figure 6: Consonance and Modulation Distribution

[4] A. Ogata, Science in Music Temperaments and Scales.
Kodan-sha blue backs (in Japanese), 2007.

[5] N. D. Cook, “Harmony perception: Harmoniousness is
more than the sum of interval consonance,” Music Per-
ception: An Interdisciplinary Journal, vol. 27, no. 1,
pp. 25–42, 2009.

[6] B. Benward and M. N. Saker, “Music: In theory and
practice, seventh edition, 2 vols.” Boston: McGraw-
Hill, 2003, p. 56.

[7] L. Tianquan, “Lun guanzi de sanfen sunyi-fa [talking
about guanzi’s sanfen sunyi-fa],” in Yi Shu Tan Suo [Art
Explore], 1995, pp. 62–65.

[8] D. J. Benson, “Music: a mathematical offering,” The
Mathematical Intelligencer, vol. 30, no. 1, pp. 76–77,
2008.

[9] G. Zarlino and V. Cohen, “On the modes: part four
of le istitutioni harmoniche, 1558.” Yale University
Press, 1983.

[10] F. d. Salinas, “De musica libri septem,” vol. 11. Edi-
ciones Universidad de Salamanca, 2014.

[11] A. Werckmeister, “Musicae mathematicae hodegus cu-
riosus.” Georg Olms Verlag, 1972.

[12] D. Ledbetter, Bach’s Well-tempered clavier: the 48
preludes and fugues. Yale University Press, 2002.

[13] A. Kameoka and M. Kuriyagawa, “Consonance theory
part ii: Consonance of complex tones and its calcula-
tion method,” The Journal of the Acoustical Society of
America, vol. 45, no. 6, pp. 1460–1469, 1969.

[14] W. Hutchinson and L. Knopoff, “The acoustic compo-
nent of western consonance,” Journal of New Music
Research, vol. 7, no. 1, pp. 1–29, 1978.

[15] W. A. Sethares, “Consonance-based spectral map-
pings,” Computer Music Journal, vol. 22, no. 1, pp.
56–72, 1998.
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