
A Model Comparison for Chord Prediction on the Annotated Beethoven Corpus

Kristoffer Landsnes
EPFL

kristoffer.landsnes@epfl.ch

Liana Mehrabyan
EPFL

liana.mehrabyan@epfl.ch

Victor Wiklund
EPFL

victor.wiklund@epfl.ch

Robert Lieck
EPFL

robert.lieck@epfl.ch

Fabian C. Moss
EPFL

fabian.moss@epfl.ch

Martin Rohrmeier
EPFL

martin.rohrmeier@epfl.ch

ABSTRACT

This paper models predictive processing of chords using
a corpus of Ludwig van Beethoven’s string quartets. A
recently published dataset consisting of expert harmonic
analyses of all Beethoven string quartets was used to eval-
uate an n-gram language model as well as a recurrent neu-
ral network (RNN) architecture based on long-short-term
memory (LSTM). We compare model performances over
different periods of Beethoven’s creative activity and pro-
vide a baseline for future research on predictive process-
ing of chords in full Roman numeral representation on this
dataset.

1. INTRODUCTION

Predictive processing and the formation of expectancies
are core capacities of human cognition that also play a
fundamental role in music perception and cognition [1–4].
Musical expectancies are essential for processes at differ-
ent time-scales, such as for musical interaction and syn-
chronization, as well as for musical tension and the play
with emotional effects [5, 6]. Musical expectancy has also
been understood to be culture- and style-dependent and to
be grounded in musical knowledge that is acquired through
processes of implicit or statistical learning [1, 7, 8]. The
modelling of predictive processing and the formation of
expectancies is thus of core importance for computational
models of music and requires a learning-based approach.

Musical expectancy has been studied in terms of melody,
harmony and rhythm, where the task is to predict the next
note, chord, onset or a combination thereof. In the gen-
eral case of polyphonic music, it is a non-trivial problem
to find a consistent representation of musical content and to
accurately define what events should be predicted. Many
past approaches have, therefore, simplified the problem to
predicting a single stream of events from a fixed alphabet,
such as melodic notes or chord events. This task is struc-
turally closely related to modelling natural language, and
similar approaches have been taken in both fields. Most
notably, one can distinguish models that use a finite-length

Copyright: c© 2019 Kristoffer Landsnes et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

context, such as n-gram or kth-order Markov models, from
models that use a latent state to capture longer dependen-
cies, such as hidden Markov models (HMMs) [9] and re-
current neural networks (RNNs) [10, 11].

In this paper, we focus on modeling the prediction of a
chord symbol given a harmonic context based on a recent
data set comprising expert annotations of the 16 Beethoven
string quartets [12], subsumed under nine different opus
numbers which formed the basic grouping for all analy-
ses. To this end, we evaluate a standard n-gram model as
well as a state-of-the-art RNN architecture based on long
short-term memory (LSTM) [13]. We report and compare
accuracy results of the two models over different opera and
discuss our results form a technical as well as from a music
theoretical point of view.

2. METHODS

2.1 Data and Preprocessing

The data used for this project contain the expert harmonic
analyses of all 16 Beethoven string quartets incorporated
in nine opera: Op. 18 (6 quartets), op. 95 (3 quartets) and
7 other opera, each containing one quartet. We group the
string quartets by opus number assuming that an opus con-
stitutes a coherent unit of a musical work with pieces that
are not independent of each other and should thus be treated
as dependent data in the training procedure. Features in the
data include global and local keys, beat, time signature,
opus and movement numbers. The chord annotation for-
mat used in the dataset is a formalised version of Roman
numeral notation, the most common music theoretic set of
symbols for harmonic analysis. In addition to the key, the
scale degree, and the figured bass, the chord annotations
include information on suspensions, added notes and pedal
notes. Table 1 demonstrates several examples of of this an-
notation format. A more detailed explanation can be found
at the official documentation of the data [12]. This anno-
tation format is much richer than what is commonly found
in harmonic corpora and thus implies a particularly chal-
lenging learning problem.

A total number of 28, 095 chord labels are annotated re-
sulting in 1, 730 unique items. More than 1,500 chords
occur less than 10 times throughout the whole corpus of
16 quartets (908 of which occur only once), while the top
5 chords occur more than 1,000 times throughout all quar-
tets. This distribution is similar to the Zipf distributions

mailto:kristoffer.landsnes@epfl.ch
mailto:liana.mehrabyan@epfl.ch
mailto:victor.wiklund@epfl.ch
mailto:robert.lieck@epfl.ch
mailto:fabian.moss@epfl
mailto:martin.rohrmeier@epfl.ch
http://creativecommons.org/licenses/by/3.0/

Notation Interpretation

V43 a dominant seventh chord in second inver-
sion

ii%7 a half-diminished seventh chord on the sec-
ond scale degree

IV6// a major triad on the fourth scale degree in
its first inversion at a phrase end

vi(+9) a minor triad on the sixth scale degree with
an added ninth

V[V a dominant triad over the pedal tone on
fifth scale degree

Table 1. Examples for chord symbols in the dataset and
interpretations.

Figure 1. Frequency of chord symbols on log-log scale.

frequently found in natural language and music [14, 15].
In order to reduce the absolute number of chord classes,

several preprocessing rules were established. Chord sym-
bols on top of a pedal, e.g. a suspended tone in the Cello,
were disregarded because their harmonic function is more
ambiguous. As a result, the number of chord categories
was drastically reduced to only 800. Figure 1 represents
the resulting distribution of chord ranks vs. chord frequen-
cies after preprocessing.

2.2 N-gram Language Model

Our goal is the prediction of chord symbols, given some
harmonic context. The simplest choice for a baseline model
is to use an n-gram language model, which estimates the
probability of the ith word wi based on the context of the
previous n− 1 words wi−(n−1) . . . wi−1as follows:

P (wi|wi−(n−1) . . . wi−1) =
C(wi−(n−1) . . . wi)

C(wi−(n−1) . . . wi−1)
,

(1)
where C(·) counts the number of times the respective se-
quence of words occurs in the training data. In order to find
the optimal n-gram length, hyperparameter tuning was per-
formed. Values of n = 2, 3, . . . , 10 were used to evaluate
results by cross validation: for each iteration, the model
was trained on the whole corpus except one opus, which
was reserved for validation purposes. As a simple n-gram

Parameter Values

Sequence Lengths [chords] [10, 20, 40, 80, 160]
Amount of layers [1, 2, 3, 4, 5]
Layer type [LSTM, Bi-directional LSTM]
Amount of neurons [8, 16, 32, 64, 128, 256, 512]
Dropout strength [0, .1, .2, .3, .4, .5]
L2-regularization [0, .001, .005, .01, .05, .1, .5]

Table 2. Model parameters explored

Layer Description

LSTM 256 neurons, return sequences = True, L2 = 0
Dropout Strength = 0.3
LSTM 64 neurons, return sequences = False, L2 = 0
Dropout Strength = 0.3
Dense 821 neurons, activation = sigmoid, L2 = 0

Table 3. Model layout

model such as (1) can not handle unseen events, we use
add-one smoothing [16] by adding one prior count to all
symbols and adjusting the denominator of (1) accordingly

P (wi|wi−(n−1) . . . wi−1) =
C(wi−(n−1) . . . wi) + 1

C(wi−(n−1) . . . wi−1) + V
,

(2)
where V is the total number of unique chords in the corpus.

2.3 Neural Network

As a more complex model for the prediction of chord sym-
bols we used a Recurrent Neural Network (RNN) with
Long Short-Term Memory cells (LSTM). This model was
selected because this type of network has shown promise in
sequence prediction tasks with long term dependencies [17]
and thus seems suitable for an application to music. More-
over, it allows us to compare the more complex RNN model
with the more basic n-gram model.

The design of the model architecture was based on re-
lated work [18, 19] after which modifications were tested
manually by maximizing for validation accuracy on 10%
of the data while training on the remaining 90%. Differ-
ent configurations of sequence lengths, dropout, amount of
layers, type of layers, and amount of neurons were tested.
Tuning of the L2-regularisation strength and dropout rate
was then done with a nine-fold cross validation using the
distinct opera as cross-validation folds. We tested param-
eters in the ranges shown in Table 2. Our final network
architecture is shown in Table 3.

We also tested replacing the initial LSTM layer with a
convolutional layer and performed a grid search over ker-
nel size and amount of filters. While the training phase was
notably faster, peak validation accuracy was a bit lower
than our final final LSTM architecture.

For the activation functions we used the defaults provided
with the Keras library [20], which is tanh. To normalize
the network output to a categorical distribution we used a

Figure 2. Comparative accuracy of a n-gram and LSTM
model using nine-fold cross validation. The error bars are
defined as as 1/sqrt(n), n being the length of the opus

softmax function

S(x)j =
exj

K∑
k=1

exk

. (3)

For training we used the Adaptive Moment Estimation (ADAM)
optimizer [21], which has proven to yield robust perfor-
mance based on prior work in the field of neural networks
and deep learning, primarily ascribed to the adaptivity of
the learning rate it employs.

3. RESULTS

Hyperparameter tuning for optimal n-gram length resulted
in an optimal value of n = 2, which is consistent with
findings in other modelling tasks in music reporting val-
ues between 2 and 4 (see e.g. [9, 16]). Thus, the simplest
model actually achieved the best average accuracy score of
0.1952 (SD=0.024). While the average accuracy for n = 3
and n = 4 did not decrease substantially, results for larger
n drastically decreased. The best recorded performance
was 0.2372 for op. 130, and the lowest score of 0.1594
was achieved for op. 135. The accuracies for all opera are
shown in Figure 2.

As for the LSTM model, it was observed that longer se-
quence lengths l in training only increased computational
time at no substantial increase in accuracy, leading us to
use the minimal value tested (l = 10) for prediction. An
average accuracy of 0.1958 (SD=0.026) was obtained with
a maximum of 0.2257 on op. 74 and a minimum of 0.1646
on op. 132. (see Figure 2). The accuracy values for both
methods and all opera are reported in Table 4. The corre-
lation between the two model accuracies is 0.21 and thus
relatively weak.

4. DISCUSSION

The n-gram and LSTM models have similar mean accu-
racies and standard deviations. The weak correlation be-
tween the n-gram and LSTM model suggests that the ac-
curacy of the models is indicative for certain properties of

opus LSTM N-GRAM

18 0.2217 0.1900
59 0.2157 0.2200
74 0.2257 0.1823
95 0.1917 0.1645
127 0.1738 0.1972
130 0.2175 0.2373
131 0.1750 0.1852
132 0.1646 0.2212
135 0.1763 0.1594
mean 0.1958 0.1952

Table 4. Results

Figure 3. Amount of chords in each opus

the data. Finding out what these properties are is not only
an interesting musicological research question but will also
allow to improve computational models for harmony pre-
diction in the future. Specifically, opp. 135, 95, 131, and
127 have the lowest accuracy values, which suggests that
harmonic progressions within these opera are especially
hard to predict.

Having a more detailed look at the performance for each
opus highlights the differences (see Figure 2). For instance,
for op. 95 the LSTM model demonstrates substantially bet-
ter performance than the n-gram model. Op. 95 is known
as one of Beethoven’s most experimental works about which
he stated that “this work is written for a small circle of con-
noisseurs and is never to be performed in public” [22]. On
the other hand, in opp. 18, 74, and 135 the n-gram model
outperforms the LSTM model. A better understanding of
where these differences originate from is an important step
and will be pursued in future research.

The best performing n-gram model was of length n = 2,
which contrasts with the musicological insight that har-
monic dependencies can be highly non-local. This sug-
gests that n-gram models, which are constructed to use lo-
cal context information as much as possible (even those
using more advanced smoothing and backoff methods) are
not able to capture long-term dependencies in harmonic
progression.

LSTM models, on the other hand, are supposed to cap-
ture long-term dependencies. The fact that, overall, the
LSTM model does not outperform the n-gram model on

the present data set suggests that this potential was not
fully leveraged as yet. One possible reason for this might
be the representation of harmonies as simple string tokens,
which does not make the rich structure of the harmonic an-
notations in the corpus accessible to the model.

Overall, an accuracy score of 19.5% is comparably low,
which is most probably due to the rich annotation format
in full Roman numeral representation making the anno-
tated Beethoven corpus a particularly challenging data set
to model.

5. CONCLUSION

We have evaluated two of the most commonly used mod-
els for sequence prediction, n-gram models and LSTM, on
a recent published data set with harmonic annotations of
Beethoven string quartets (ABC). Our LSTM model and
the best performing n-gram model (with n = 2) showed
comparable performance with an average accuracy of 19.5%
over an alphabet of 800 harmonic symbols. The context
length of n = 2 suggests that neither of the models was
able to pick up on non-local dependencies in harmonic pro-
gressions, which underlines the importance of incorporat-
ing structural knowledge from music theory into computa-
tional models.

As the ABC dataset is largely unexplored and is unique
due to its rich annotation format, we hope that our results –
especially the accuracy score of 19.5% – provide a useful
baseline for other researchers in the community.

Acknowledgments

MR would like to thank Mr Claude Latour for supporting
this research.

6. REFERENCES

[1] D. B. Huron, Sweet Anticipation: Music and the
Psychology of Expectation. MIT press, 2006.

[2] M. T. Pearce and G. A. Wiggins, “Auditory expecta-
tion: The information dynamics of music perception
and cognition,” Topics in cognitive science, vol. 4,
no. 4, pp. 625–652, 2012.

[3] M. A. Rohrmeier and S. Koelsch, “Predictive informa-
tion processing in music cognition. A critical review,”
International Journal of Psychophysiology, vol. 83,
no. 2, pp. 164–175, 2012.

[4] M. Pearce and M. Rohrmeier, “Music cognition and the
cognitive sciences,” Topics in cognitive science, vol. 4,
no. 4, pp. 468–484, 2012.

[5] L. B. Meyer, Emotion and Meaning in Music. Uni-
versity of Chicago Press, 2008.

[6] M. M. Farbood, “A parametric, temporal model of mu-
sical tension,” Music Perception: An Interdisciplinary
Journal, vol. 29, no. 4, pp. 387–428, 2012.

[7] M. Rohrmeier and P. Rebuschat, “Implicit learning
and acquisition of music,” Topics in cognitive science,
vol. 4, no. 4, pp. 525–553, 2012.

[8] J. R. Saffran, E. K. Johnson, R. N. Aslin, and E. L.
Newport, “Statistical learning of tone sequences by hu-
man infants and adults,” Cognition, vol. 70, no. 1, pp.
27–52, 1999.

[9] M. Rohrmeier and T. Graepel, “Comparing feature-
based models of harmony,” in Proceedings of the
9th International Symposium on Computer Music
Modelling and Retrieval. Citeseer, 2012, pp. 357–
370.

[10] F. Colombo, S. P. Muscinelli, A. Seeholzer, J. Brea,
and W. Gerstner, “Algorithmic composition of
melodies with deep recurrent neural networks,” arXiv
preprint arXiv:1606.07251, 2016.

[11] F. Colombo, A. Seeholzer, and W. Gerstner, “Deep
artificial composer: A creative neural network
model for automated melody generation,” in
International Conference on Evolutionary and
Biologically Inspired Music and Art. Springer, 2017,
pp. 81–96.

[12] M. Neuwirth, D. Harasim, F. C. Moss, and
M. Rohrmeier, “The annotated beethoven corpus
(ABC): A dataset of harmonic analyses of all
beethoven string quartets,” Frontiers in Digital
Humanities, vol. 5, jul 2018. [Online]. Available:
https://doi.org/10.3389/fdigh.2018.00016

[13] A. Graves, “Generating sequences with recurrent neu-
ral networks,” arXiv preprint arXiv:1308.0850, 2013.

[14] S. T. Piantadosi, “Zipf’s word frequency law in natu-
ral language: a critical review and future directions.”
Psychonomic bulletin & review, vol. 21, no. 5, pp.
1112–30, oct 2014.

[15] D. H. Zanette, “Zipf’s law and the creation of musical
context,” Musicae Scientiae, vol. 10, no. 1, pp. 3–18,
2006.

[16] M. T. Pearce and G. A. Wiggins, “Improved meth-
ods for statistical modelling of monophonic music,”
Journal of New Music Research, vol. 33, no. 4, pp.
367–385, 2004.

[17] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber
et al., “Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies,” 2001.

[18] H. Lim, S. Rhyu, and K. Lee, “Chord generation
from symbolic melody using blstm networks,” arXiv
preprint arXiv:1712.01011, 2017.

[19] S. Skuli, “How to generate music using a lstm
neural network in keras,” no. Dec 7, 2017. [Online].
Available: https://bit.ly/2IZtgm0

[20] F. Chollet, J. Allaire et al., “Keras,” https://github.com/
keras-team/keras, 2019.

https://doi.org/10.3389/fdigh.2018.00016
https://bit.ly/2IZtgm0
https://github.com/keras-team/keras
https://github.com/keras-team/keras

[21] S. Ruder, “An overview of gradient descent optimiza-
tion algorithms,” arXiv:1609.04747, 2016.

[22] B. Cooper, Beethoven. Oxford University press, 2000.

	 1. Introduction
	 2. Methods
	2.1 Data and Preprocessing
	2.2 N-gram Language Model
	2.3 Neural Network

	 3. Results
	 4. Discussion
	 5. Conclusion
	 6. References

