Non-Linear Contact Sound Synthesis for Real-Time Audio-Visual Applications
using Modal Textures

Martin Maunsbach
Aalborg University
mmaunsl7@student.aau.dk

ABSTRACT

Sound design is an integral part of making a virtual en-
vironment come to life. Spatialization is important to the
perceptual localization of sounds, while the quality deter-
mines how well virtual objects come to life. The imple-
mentation of pre-recorded audio for physical interactions
in virtual environments often requires a vast library of au-
dio files to distinguish each interaction from the other.

This paper explains the implementation of a modal syn-
thesis toolkit for the Unity game engine to automatically
add impact and rolling sounds to interacting objects. Posi-
tion-dependent sounds are achieved using a custom shader
that can contain textures with modal weighting parameters.

The two types of contact sounds are synthesized using a
mechanical oscillator describing a mass-spring system. We
describe the discretization methods adopted, the solution
of the nonlinear interaction and an implementation in the
Unity game engine.

1. INTRODUCTION

High quality audio effects for virtual environments, as seen
in video games, are important to the user’s feeling of pres-
ence and overall experience. Specifically, impact sounds of
colliding objects are of great importance to games [1], but
sound of friction and rolling are also in demand. Sound
effects are, however, slow and difficult to create and re-
quire specialized talents to implement correctly [2]. Fur-
thermore, lacking realism in the sensory experience of any
virtual environment leads to a break in perceived presence.
For example, if a table is struck with a hammer and only
produces a slight tapping sound, the experience is sending
conflicting information to its user. To counter this prob-
lem, the field of physical modelling of sound effects is of
particular interest.

Through this field of knowledge, the automatic genera-
tion of contact sounds can be synthesized without the need
for large libraries of pre-recorded samples.

One popular synthesis technique adopted to simulate sev-
eral material properties is modal synthesis [3,4]. In modal
synthesis, the frequencies of vibration in a material are

Copyright: © 2019 Martin Maunsbach et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Stefania Serafin
Aalborg University
sts@create.aau.dk

simulated considering the normal modes of real objects.
The normal modes describe the peaks in the spectral con-
tents of a sound. This form of physical modelling of sound
is also easily scaled in its level of detail, since the number
of frequencies that are modelled at any time can be altered
as necessary, and is computationally efficient. This makes
it particularly well-suited for real-time implementation [2].
The modes are not only different because of material, but
also the shape of the object in question and the position
of impact. To accommodate for the position-dependency,
a weighting ratio of each mode changes depending on the
position of impact. The physical properties of simulated
materials are of great importance. For example, materials
that are more stiff will produce inherently higher pitched
sounds when struck.

In this paper, the design and implementation of a modal
synthesis toolbox for the game engine Unity is described.
The simulation is produced to free developers using the
game engine from the time-consuming process of captur-
ing libraries of impact and rolling sound events, and in-
stead have these sounds rendered through a mechanical os-
cillator, based on events within their virtual environments.

2. RELATED WORK

The fields of computer graphics and physical modelling of
sound synthesis often overlap. The finite element method,
though computationally heavy, can calculate the modes of
3D models, as seen in a program like mesh2faust, than can
compute the modes from a mesh [5]. “Example-guided”
automation to modal synthesis has been done, where record-
ings estimate the physical parameters across an example
object. For other objects using the same material - but
different geometric shape, the parameters of the example
object can be used to automatically transfer the modes for
object of differently shaped object [6]. A method model-
ing the wave propagation of a mesh is the digital waveg-
uide mesh, that uses bidirectional delay units to simulate
the reflections and transmissions through connected digital
waveguides at a wave impedance [7].

Impact sounds have been synthesized in various ways.
One example uses banded digital waveguide synthesis,
where dynamically filtered white noise is passed though
bandpass filters to add the characteristics of a material [1].
The mechanical oscillator used in this paper is not only
useful for impact sounds, but can also other interactions
like friction for a rolling wheel, finger rubbing on glass
and squeaking doors [8]. The rolling and rubbing interac-

mailto:mmauns17@student.aau.dk
sts@create.aau.dk
http://creativecommons.org/licenses/by/3.0/

tion was further explored by Conan et al., where the same
equation for the force that explains the sphere-plane inter-
action in this project also was used [9]. By utilizing the
sparsity of modal sounds in the frequency domain, some
modal synthesis was found to be 5-8 times faster compared
to the time-domain equivalent [10].

When combined with computer graphics, sound synthe-
sis has used shaders to design physical models of mas-
sive digital instruments [11], where the GPU is used to
help with the computational load. Sound signals have also
been stored as RGBA sound signals to use GPU process-
ing [12]. Similar work storing model parameters in tex-
tures was done in 2001 by scanning objects using a highly
automated robotic facility [13].

Both proprietary and publicly available game engines have
begun incorporating synthesis into their sound design. Rock-
star’s RAGE engine, that was used to develop Grand Theft
Auto V, has a real-time synthesis toolkit for assets “you
can’t necessarily create with samples alone” [14].The mo-
tivation for real-time synthesis was based on dynamic as-
sets, fidelity and memory usage. The publicly available
game engine Unreal Engine has also begun adding real-
time synthesis to their game engine, and is looking into
computing it on the GPU in a way that can be referred to
as audio “shaders” [15].

3. SYSTEM MODELLING

A mechanical oscillator can take the form [16]:

1
FPtgitwir=—Ff (1)
m

where the oscillator displacement x is used to produce the
audio output. The frequency is set in w and the damping
constant g is determined by a quality factor ¢ by g = w/q.
The oscillator velocity and acceleration are determined by
2 and & respectively. The modal weighting is determined
by 1/m. Using the K method to eliminate the delay-free
[17] loop that will arise from the force equation and the
trapezoidal rule, the output can be discretized take the form

wn] = H(Cy[n]+y[n—1])+ H(al + A)wn—1]) (2)

where w is the vector [z; &], y is the force f and A, C and
H are transformation matrices found from Equation (1)

1
H= . |**J 1 ;
a? + ag + w?

—w o
0 1 0
a2 4 e]
If the frequency, quality factor and modal weight remains
constant throughout the interaction, these matrices need

only be computed once.
The contact force is given by [18]

3

f(z,2) = 2%(k + A1) Ch)

where x is the same oscillator displacement as in Equa-
tion (1). This mutual dependency creates the delay-free

loop, where the K method can be used. The velocity at the
moment of impact is &, while the constant & is the elastic
coefficient and « is a value between 1.5 and 3.5 that de-
scribes the surface geometry [16]. A value of 1.5 is used in
this paper, which leads to the non-linearity, that is solved
by approximating the value using Newton-Rhapson.

The modal weight at specific positions can be changed
with the weighting factor 1/m in Equation (1). The position-
dependency means the matrices that previously only had
to be computed once on impact have to be computed every
time the modal weight changes. This adds additional con-
stant multiplication for each buffer window, that is negligi-
ble in the overall computation cost, as the modal weight
only appears in the C' transformation matrix as seen in
Equation (3). Since a single mode is not enough for a real-
istic sound, multiple instances of the mechanical oscillator
can be coupled together through matrix generalization.

4. IMPLEMENTATION

The synthesis is implemented directly into Unity using C#
utilizing Unity’s base class MonoBehaviour to access the
function OnAudioFilterRead that can insert data directly
into the audio buffer at sample rate.

4.1 Exciters and Resonators

The implementation allows the user to choose which ob-
jects produce sound and select between three interaction
types for those objects. Each sound-emitting object has its
own individual audio source, which allows the output to
be spatialized based on its position in the 3D space. The
three interactions are based on the exciter-resonator rela-
tion, where one object acts as a hammer and adds the ex-
citation to the resonating object. The first two interactions
are exclusively as an exciter or resonator while the third is
both of them combined.

The first interaction type is where the object only is an
exciter. The exciter only emits sound when colliding with
a resonator. This is useful for moving objects hitting non-
moving objects, like a ball hitting a wall or rolling on the
floor.

Having an object set to the second interaction type of a
a resonator is especially useful for static objects. These
are objects that should not act as exciters themselves. In a
virtual environment this can be walls, floors or other non-
moving objects.

The third interaction type is an object being both an ex-
citer and a resonator, which gives the full effect of the sys-
tem. Realistically, all objects are both exciters and res-
onators, but this does not necessarily have to be the case
in virtual environments. This is useful for moving objects
that create a sound, like a falling plate or a rolling glass.

4.2 Material Properties

As described in Equation (1) and modal synthesis, the sound
of the mechanical oscillator is a result of the normal modes
of the resonator, their weighting ratios and quality factors.
The normal modes can be found by analysing a sound or

computing it from object meshes alongside some of its ma-
terial parameters. Any number of modes can be used for
the material. More detail is obtained with the use of more
modes at the cost of additional computation power. A post-
gain is applied to the output amplify the signal that is oth-
erwise a very low value. In some cases this could affect
the sound, but working with the C# type floats that stores
32-bit floating-point values gives a high bit depth.

Beside the modes and its corresponding parameters, an
object can also be set to be “rollable”, adding the rolling
sound to the object. There should be distinguished between
sliding objects that require a friction sound and rolling ob-
jects.

4.3 Micro-Impact Rolling

The sound of rolling can in many instances be described as
many small impacts [16]. How rough a surface is will have
an effect on the micro-impacts. Consider rolling sound in
dirt, cobblestones or smooth, new asphalt. On most sur-
faces, where the roughness is not entirely visible like it
is with cobblestones, the rolling sound can be modeled
with randomly spaced impacts. The micro-impacts must
be within a maximum and minimum margin, as too far
spaced apart impacts sound like a repeated knocking, while
impacts too close to each other makes it sound like a con-
tinuous sound and not rolling. The random factor is impor-
tant to avoiding the rolling keeping a constant frequency
and evolving into what resembles a tone. Rolling can be
modelled by having the impacts occurring in between du-
rations of time where the force is set to 0.

4.4 Object Interaction

The triggering of sound is achieved by utilizing MonoBe-
haviour’s collision system in the physics module. These
function are called when objects enter, stay or exit a col-
lision. Upon entering a collision, the relative velocity be-
tween the objects can be found, but the magnitude of this
is not precise enough. If only this value is found, moving
from one surface to another without altitude change or im-
pacting at a narrow angle can have the same velocity as a
direct impact, orthogonal to the surface. The velocity for
the impact is found by taking the dot-product of the veloc-
ity and the normal vector of the contact point. If an object
rolls from one surface to another without moving the ob-
ject vertically, the velocity excitation to control the impact
sound is zero.

If an object is set to being rollable, the velocity is found
as the objects stay in a state of collision. The velocity is
mapped to control the time between each micro-impact.
The more micro-impacts are heard, the faster the rolling is
heard to be. Once the objects exit the collision, there is
no more force added to the system and the audio fades out
naturally as the impacts would.

4.5 Modal Weight Texture

As seen in Fig. 1, a custom shader is built that can contain
multiple textures. The special modal textures do not affect
the visual aspect of the object as they are never rendered,

. MarimbaModes @ #
v Shader | ModalMapping v |
Visible Texture m
Tiling X1 ¥ 1 i e
Offset A0 Y0 Select
—
o —
Tiling X1 ¥ 1
Offset X0 Y0 Salect

Mode 2
Tiling
Offset

Mode 3
Tiling
Offset

Mode 4

Figure 1. View of the custom shader from the inspector.

but their modal weighting values can still be accessed. The
precision of the model weighting obtained depends on the
resolution and interpolation of the created texture as well
as how the image file of the texture is imported with or
without compression. The contact point of that returns the
pixel and its modal weight can either be found using the
contact point provided by the collision system or as a ray-
cast when the mouse is used.

5. OBJECT SIMULATIONS

The implementation described has been applied to three
different acoustic system with impact-specific interactions.
Fig. 2 shows a visual representation of the scenarios using
the Unity engine. The first is marbles, that only are af-
fected by gravity and objects in its way, while the second
is a marimba instrument and the third is the surface of a
glass table. Combined, these interactions show the con-
tact synthesis in instances with no modal texture, a one-
dimensional modal texture and a two-dimensional modal
texture.

5.1 Rolling Sphere

The spring-mass system can be used for a free-falling ob-
ject impacting at a single point. The total force impacting
on such an exciter is given by

fO =f—m-g)

where f is the impact force approximated using Newton-
Rhapson and my, is the mass and g is gravity. This results
in multiple impacts like a bouncing ball, but the system
determining the force can be set to zero after a single im-
pact, thus only emitting the sound of a single impact. Sim-
ilarly to Equations (2) and (3), the force of the exciter is
also discretized focusing on the displacement and velocity,
that is used to approximate the total force using Newton-
Rhapson.

o/

S

(a) Marbles rolling.

\

(b) Glass table and marimba.

Figure 2. The interactive simulations built in the Unity
game engine. Marbles are rolling down only affected by
gravity on the left while specific positions can be pressed
on the right hand side using the mouse.

An example using marble-like objects rolling down a track
is shown on the left hand side of Fig. 2. The marbles are
on “rollable” planes, as described in Section 4.4, where
the material of each plane determines the characteristics of
the impact and rolling. More accurate simulations can be
achieved by taking the incline into account.

5.2 Marimba Instrument

The second physical model is the marimba instrument. The
marimba is described in detail by La Favre [19]. A marimba
is an idiophone made up of bars that vibrate in complex
patterns resulting in the unique sound. It has been shown
that up to 25 modes of vibrations ranging from 0 to 8,000
Hz can be found in a struck C3. Simple marimbas need
only be tuned for the fundamental frequency, while con-
cert marimbas will be at least “triple tuned”. The marimba
can be modelled by having a fundamental frequency with
the second and third modes at 4.0 and 9.2 times the funda-
mental [20], though some calculations put the third mode
above 10.08 times that [19]. A fourth mode can be found
at 19.6 times the fundamental. The modes are transverse
modes, and it is shown that the amplitude of the modes
change depending struck position on the bar by the mal-
let [21].

For this implementation, the modes and their respective
amplitudes at four positions are found by La Favre [21].
The bar is struck at 4 positions; center, off-center, off-
edge and at the edge of the bar. These values are one-
dimensional, as the position only changes in one dimen-
sion from center to edge. A two-dimensional modal tex-
ture could be obtained by striking the bar across the shorter
edge at the same positions.

The instrument is controlled using the mouse. On a click,
a raycast traces a line to the hit object and obtains the
UV coordinates of the raycast hit position. The UV is
transformed to pixel coordinate by multiplying by the tex-
ture’s width and height and the color (and therefore modal
weighting) of the pixel at the coordinate is obtained. The
mechanical oscillator is excited by an initial velocity at im-
pact.

0

Figure 3. Textures used for the marimba bar, with in-
tensified brightness. The grayscale value of the color is
the modal weight. The leftmost depicts the fundamental
frequency while the rightmost in the connected field de-
picts the fourth mode. In this instance, all other position’s
weighting values are scaled compared to the fundamental
frequency, the modal texture of the fundamental frequency
is is a single value across all positions.

Fig. 3 shows the four mode textures with intensified light-
ing, as it otherwise would be too hard to distinguish be-
tween the dark colors. The four textures are applied to
every marimba bar in Fig. 2 and once hit, the value at the
point is passed on to script controlling the synthesis. To
scale each position to approximately the same overall am-
plitude, the first mode is set to the same for each position
and the rest are scaled after it. The values are set between
0 (not inclusive) and 1, with 0 being completely black and
1 being white. It is not possible to have a value of 0, as
the mechanical oscillator model at one point divides by the
modal weighting. To ensure a value of O isn’t read due
to import and compression settings, a check is done while
getting the pixel, setting it no less than a minimum value.

5.3 Circular Glass Table

The surface of a glass table is a simple everyday object
with a circular plane as its top. Since the diameter is equal
all around table, the amplitude of each mode is equal for
all positions at equal direct length to the edge or the cen-
ter. Five recordings were obtained from the glass table and
used to create the modal textures. They can be described
from the edge to the center as the edge, off-edge, middle,
off-center and center. By analysing the recordings to see
which modes were prominent across all of them, 12 modes
were selected to create 12 modal textures.

The surface plot in Fig. 4 shows the values of one modal
texture as height data. A circular texture of the modal
weight of the recordings is created by rotating and inter-
polated line of the data around the center. The texture used
is 800 times 800 pixels for the surface plot, but it can be
as low as 9 times 9 pixels (five for the radius including the
center and 9 for the whole diameter) if Unity’s own im-
age stretching is used for the interpolation, though higher

Modal Weight [m]

400

Position [pixels] 0 0 Position [pixels]

Figure 4. A 3D surface plot of the texture for the third
mode of the glass table. The recordings of five posi-
tions from the center to the edge are interpolated around
in a circle with the center as the anchor to create the 2-
dimensional texture.

resolution textures are recommended to achieve smoother
transitions between the weighting of each position.

6. CONCLUSION

In this paper an approach to using physical modelling for
impact and rollings sounds in a virtual environment is pro-
posed. This approach also includes the use of graphical
textures for modal weightings to simulate position-depen-
dent impacts.

The implementation can be extended to other interactions
than an impact. Friction can use the same mechanical os-
cillator albeit with a different force excitation. The friction
interaction of rubbing on a glass could use the modal tex-
turing.

There are clear advantages to this combination of com-
puter graphics and physical modelling of sound synthesis
using the mechanical oscillator. Theoretically, if an object
is modelled in 3D and a visual texture already is created,
modal weights from recordings of its real-world counter-
part can be specified to a point on the visual texture, and a
modal texture can be computed for the whole model.

Since the modal textures are computed offline, which saves
computational cost at runtime, the end result can be de-
scribed as conveniently placed lookup-tables.

7. REFERENCES

[1] M. Aramaki and R. Kronland-Martinet, “Analysis-
synthesis of impact sounds by real-time dynamic filter-
ing,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 14, no. 2, pp. 695-705, March
2006.

K. van den Doel, P. G. Kry, and D. K. Pai, “Foleyau-
tomatic: Physically-based sound effects for interactive
simulation and animation,” in Proceedings of the
28th Annual Conference on Computer Graphics and

(3]

(4]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

Interactive Techniques, 2001, pp. 537-544. [Online].
Available: http://doi.acm.org/10.1145/383259.383322

J.-M. Adrien, “The missing link: Modal synthesis,” in
Representations of musical signals, 1991, pp. 269-298.

K. Van Den Doel and D. K. Pai, “Modal synthesis for
vibrating objects,” Audio Anectodes. AK Peter, Natick,
MA, pp. 1-8, 2003.

R. Michon and S. Martin, “Mesh2faust: a modal phys-
ical model generator for the faust programming lan-
guage application to bell modeling,” in Proceedings of
the International Computer Music Conference (ICMC-
17),2017.

Z. Ren, H. Yeh, and M. C. Lin, “Example-
guided physically based modal sound synthesis,”
ACM Trans. Graph., vol. 32. [Online]. Available:
http://doi.acm.org/10.1145/2421636.2421637

S. Van Duyne and J. Smith III, “The 2-D digital waveg-
uide mesh,” in Proceedings of the International Com-
puter Music Conference, 11 1993, pp. 177 — 180.

F. Avanzini, S. Serafin, and D. Rocchesso, “Interac-
tive simulation of rigid body interaction with friction-
induced sound generation,” IEEE Transactions on
Speech and Audio Processing, vol. 13, no. 5, pp. 1073—
1081, Sep. 2005.

S. Conan, E. Thoret, M. Aramaki, O. Derrien,
C. Gondre, R. Kronland-Martinet, and S. Ystad,
“Navigating in a space of synthesized interaction-
sounds: rubbing, scratching and rolling sounds,” in
16th International Conference on Digital Audio Effects
(DAFx), Sep. 2013, pp. 202 — 209. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00877652

N. Bonneel, G. Drettakis, N. Tsingos, 1. Viaud-
Delmon, and D. James, “Fast modal sounds with
scalable frequency-domain synthesis,” ACM Trans.
Graph., vol. 27, 08 2008.

V. Zappi, A. Allen, and S. Fels, “Shader-based physi-
cal modelling for the design of massive digital musical
instruments,” in NIME, 2017.

E. Gallo and N. Tsingos, “Efficient 3D Audio
Processing on the GPU,” ACM Workshop on General
Purpose Computing on Graphics Processors, ACM,
Aug. 2004, poster. [Online]. Available: https:
//hal.inria.fr/inria-00606754

D. K. Pai, K. v. d. Doel, D. L. James, J. Lang, J. E.
Lloyd, J. L. Richmond, and S. H. Yau, “Scanning
physical interaction behavior of 3D objects,” in
Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, ser.
SIGGRAPH *01. ACM, 2001, pp. 87-96. [Online].
Available: http://doi.acm.org/10.1145/383259.383268

http://doi.acm.org/10.1145/383259.383322
http://doi.acm.org/10.1145/2421636.2421637
https://hal.archives-ouvertes.fr/hal-00877652
https://hal.inria.fr/inria-00606754
https://hal.inria.fr/inria-00606754
http://doi.acm.org/10.1145/383259.383268

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

A. MacGregor, “The sound of Grand Theft Auto
V,” in Game Developers Conference. Rockstar
North, 2014, accessed: 2019-02-14. [Online].
Available: https://www.gdcvault.com/play/1020587/
The-Sound-of-Grand-Theft

A. McLeran, “The future of audio in unreal engine,”
in Game Developers Conference. Epic Games,
2017, accessed: 2019-02-14. [Online]. Avail-
able: https://www.unrealengine.com/en-US/events/
gdc-2017-the-future-of-audio-in-unreal-engine

D. Rocchesso and F. Fontana, “The sounding object,”
IEEE Multimedia - IEEEMM, 01 2003.

G. Borin, G. De Poli, and D. Rocchesso, “Elimination
of delay-free loops in discrete-time models of nonlin-
ear acoustic systems,” IEEE Transactions on Speech
and Audio Processing, vol. 8, no. 5, pp. 597-605, Sep.
2000.

D. W. Marhefka and D. E. Orin, “A compliant con-
tact model with nonlinear damping for simulation
of robotic systems,” IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans,
vol. 29, no. 6, pp. 566572, Nov 1999.

J. La Favre, “Tuning the marimba bar and resonator,”
http://www.lafavre.us/tuning-marimba.htm, 2007, ac-
cessed: 2019-02-10.

N. H. Fletcher and T. D. Rossing, The Physics of Mu-
sical Instruments. ~ Springer, 1998.

J. La Favre, “Position of mallet blow on bar - effect
on bar timbre (sound quality),” http://www.lafavre.us/
FFT-mallet-position.htm, 2007, accessed: 2019-02-10.

https://www.gdcvault.com/play/1020587/The-Sound-of-Grand-Theft
https://www.gdcvault.com/play/1020587/The-Sound-of-Grand-Theft
https://www.unrealengine.com/en-US/events/gdc-2017-the-future-of-audio-in-unreal-engine
https://www.unrealengine.com/en-US/events/gdc-2017-the-future-of-audio-in-unreal-engine
http://www.lafavre.us/tuning-marimba.htm
http://www.lafavre.us/FFT-mallet-position.htm
http://www.lafavre.us/FFT-mallet-position.htm

	 1. Introduction
	 2. Related Work
	 3. System Modelling
	 4. Implementation
	4.1 Exciters and Resonators
	4.2 Material Properties
	4.3 Micro-Impact Rolling
	4.4 Object Interaction
	4.5 Modal Weight Texture

	 5. Object Simulations
	5.1 Rolling Sphere
	5.2 Marimba Instrument
	5.3 Circular Glass Table

	 6. Conclusion
	 7. References

