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ABSTRACT

Fundamental frequency (f0) modeling is an important but 
relatively unexplored aspect of choir singing. Performance 
evaluation as well as auditory analysis of singing, whether 
individually or in a choir, often depend on extracting f0 
contours for the singing voice. However, due to the large 
number of singers, singing at a similar frequency range, 
extracting the exact individual pitch contours from choir 
recordings is a challenging task. In this paper, we ad-
dress this task and develop a methodology for modeling 
pitch contours of SATB choir recordings. A typical SATB 
choir consists of four parts, each covering a distinct range 
of pitches and often with multiple singers each. We first 
evaluate some state-of-the-art multi-f0 estimation systems 
for the particular case of choirs with a single singer per 
part, and observe that the pitch of individual singers can 
be estimated to a relatively high degree of accuracy. We 
observe, however, that the scenario of multiple singers for 
each choir part (i.e. unison singing) is far more challeng-
ing. In this work we propose a methodology based on com-
bining a multi-f0 estimation methodology based on deep 
learning followed by a set of traditional DSP techniques 
to model f0 and its dispersion instead of a single f0 tra-
jectory for each choir part. We present and discuss our 
observations and test our framework with different singer 
configurations.

1. INTRODUCTION

Singing in a SATB (Soprano, Alto, Tenor, Bass) choir is a 
long standing and well enjoyed practice, with many choirs 
following this format across different languages and cul-
tures. Performances are based on scores, which provide 
linguistic, timing and pitch information for the singers in 
the choir to follow. Professional choirs practice for years 
to ensure that their performance is in tune with a refer-
ence pitch; however, due to the mechanism of voice pro-
duction and expressive characteristics, the pitch of the in-
dividual voices in the choir often deviates from the theo-
retical pitch as indicated in the score. As a consequence, 
analysis and evaluation of a choir performance depends on 
the combination of pitches produced by individual singers 
in the choir. Through history, conductors, teachers, and
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critics have relied on their own interpretation of pitch and
harmony, while listening and/or evaluating a choir. In re-
cent years, a few automatic analysis and evaluation sys-
tems have been proposed [1, 2] to provide an informed
analysis of choirs in terms of intonation. In general, these
systems require the extraction of accurate pitch contours
for individual vocal tracks, which has hitherto been a road-
block for analysis, as multi-f0 extraction systems are not
able to provide sufficient pitch precision and accuracy to
drive analysis systems from full mixed choir recordings.
This can primarily be pinned down to the fact that in a
choral recording, multiple singers with similar timbres are
singing in harmony, and even the same notes within each
choir section, leading to overlapping harmonics, which are
difficult to isolate. While several multi-f0 estimation sys-
tems have been designed for music with easily distinguish-
able sources, e.g. music with vocals, guitar, bass and drums,
very few research has been carried out in the domain of
vocal ensembles, be it because of the lack of annotated
datasets or because modeling several people singing very
close frequencies, i.e. in unison, is very challenging in
terms of f0 resolution.

In this work we address the computational modeling of
pitch in choir recordings. In order to do that, we first eval-
uate how a set of multi-f0 estimation algorithms perform
with vocal quartets and try to identify their main limita-
tions. Then, we use the evaluation results to select the
best-performing algorithm and use it to extract a first ap-
proximation of the f0 of each choir section. In the second
step we use a set of traditional DSP techniques to increase
the pitch resolution around the estimated f0s and model f0
dispersion. The main focus of this adaptation is not to ob-
tain an accurate f0 estimate for each voice inside each choir
section, but to model the distribution of f0 of a choir sec-
tion singing in unison, measured through the dispersion of
pitch values across each part.

The rest of the paper is organized as follows: Section 2
provides a brief overview of the current state-of-the-art for
multi-f0 extraction. Section 3 describes the limitations of
current systems to characterize f0 in unison performances.
Then, in Section 4 we define the evaluation metrics com-
monly used in the field, followed by Section 4.1 present-
ing the dataset used in this study. Section 5 discusses the
initial evaluation of state-of-the-art methodologies on our
particular material. Following this, Section 6 presents a
novel approach to model unison recordings by combining
a multi-f0 estimation algorithm with traditional DSP tech-
niques. Section 7 presents and discusses the results and
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limitations of the proposed system , and finally in Section
8 we provide some conclusions on the method and com-
ments on future research that we intend to carry out.

2. STATE OF THE ART

Multi-f0 estimation involves the detection of multiple con-
current f0 from an audio recording [3] and it is a core step
of the task of automatic music transcription (ATM): con-
verting an acoustic musical signal into some form of mu-
sical notation [4]. We briefly summarize a set of multi-f0
estimation methods that can be applied to vocal music, al-
though they try to estimate f0 values of individual singers,
while we address the modeling of f0 of unison singing.

Duan et al. [5] presented an approach to multi-f0 esti-
mation using maximum-likelihood, where they model two
different regions of the input power spectrum: the peak re-
gion, comprising the set of frequencies that are within a
distance d of the peak frequencies, and the non-peak re-
gion, which is the complement of the peak region. The
input signal is normalized and the power spectrum is com-
puted frame-wise. A set of spectral peaks are extracted
using a peak detection algorithm, and then several f0 can-
didates are computed in the range of one semitone around
each peak. For each time frame, the f0 of each source is
estimated by maximizing the probability of having har-
monics that explain the observed peaks and minimizing
the probability of having harmonics in the region where
no peaks were observed. This is accomplished optimiz-
ing the parameters of a likelihood function that combines
the peak region likelihood and the non-peak region likeli-
hood, treated as independent sets. They use monophonic
and polyphonic training data to learn the model parame-
ters. Their system also estimates polyphony, i.e. how many
sources there are in the mix, which define the number of f0
the model should estimate at each frame. Finally, a post-
processing step using information for neighbouring frames
is implemented to make the pitch predictions more stable.
This process of refining the f0 estimates, however, removes
duplicate estimates, which a problem in the case of several
sources producing the same f0, i.e. unison singing. The
system parameters were learned using training data con-
sisting of mixes of individual monophonic note recordings
from 16 instruments including flute, saxophone, oboe, vi-
olin, bass, and violin among others. Then, they evaluated
the algorithm on 4-part Bach chorales performed by a quar-
tet: violin, clarinet, tenor saxophone and bassoon. These
details about the data they used to train and evaluate the
system are very relevant for our research, since given the
lack of vocal data in the training and evaluation stages, we
expect the system to perform worse in choral music.

Another relevant system for multiple f0 estimation is the
one developed by Klapuri [6], which estimates each f0 in
the mixture iteratively: at every step, the system detects
the most predominant f0 and its corresponding harmon-
ics are then substracted from the spectrum. In this case,
the input signal is passed through a bank of linear band-
pass filters that resemble the inner ear behaviour in terms
of frequency selectivity. Then, the output signal at each
band is processed in a nonlinear manner to approximate

the firing activity in the auditory nerve. After this pre-
processing steps, a frequency-domain signal representation
is obtained by combining the band spectra, which is then
used to extract a pitch salience function to emphasize the
fundamental frequencies present in the signal. From this
representation, multiple f0 values are estimated iteratively:
at each step, a f0 value is estimated and its harmonic par-
tials are removed from the spectrum. This step is repeated
until a f0 value is estimated for each source. In [6] he also
implements a polyphony estimator, which determines how
many f0 values need to be extracted and therefore the num-
ber of iterations. The system was evaluated with a collec-
tion of mixtures of individual sounds (some of them from
the same source as in [5]). The authors does not explicitly
mention any vocals in the dataset, and therefore we assume
the method is not optimized for our particular material.

Schramm and Benetos [7] presented a method specifi-
cally designed for multi-f0 estimation in a cappella vocal
ensembles. They use a two-step approach: first, a system
based on probabilistic latent component analysis (PLCA)
employs a fixed dictionary of spectral templates to extract
the first frequency estimates; as a second step, a binary
random forest classifier is used to refine the f0 estimates
based on the overtones properties. Spectral templates are
extracted from recordings of multiple singers singing pure
vowels in English. These recordings belong to the RWC
dataset [8]. This method uses the normalized variable-Q
transform (VQT) as input, which is then factorized using
the expectation-maximization algorithm to estimate the pa-
rameters of the model. As opposed to the previously pre-
sented methods, this one is focused on vocal ensembles
and it is trained and evaluated with such data, i.e. vocal
quartets, one singer per part. They use a f0 resolution of 20
cents, which is enough for transcription purposes but not to
deal with frequencies as close to each other as in unisons.

Another method for multi-f0 estimation designed for the
case of multiple singers is the one presented by Su et al.
[9]. The authors claim that data is crucial to develop and
evaluate such systems, and yet there is not a labeled multi-
f0 dataset for choir, which is one of the most common type
of music through the ages and cultures. Their work has two
separate parts: first, they present a novel annotated dataset
of choir and symphonic music; then, they build an unsu-
pervised approach to multi-f0 estimation using advanced
time-frequency (TF) analysis techniques such as the con-
centration of time and frequency method. According to
their paper, these techniques help improving the stabiliza-
tion of pitch, which is interpreted in three dimensions: fre-
quency, periodicity, and harmonicity.

Recent advancements in deep learning based systems have
led novel deep learning based multi-f0 extraction systems,
designed to be agnostic to the exact source of the pitched
instruments in the mix. DeepSalience [10] is one of the
most recent systems for multi-instrument pop/rock songs
and mixtures. The model leverages harmonic information
provided by a HCQT transform, comprising 6 constant-
Q transforms (CQT), with a convolutional neural network
(CNN) to extract pitch salience from an input audio mix-
ture. The network is fully convolutional with 5 convolu-



tional layers, it uses batch normalization and rectified lin-
ear units (ReLU) at each output. The final layer of the
network uses logistic activation, mapping each bin of the
output to the range [0,1], representing pitch salience. It
is trained using cross-entropy minimization. This pitch
salience essentially predicts the probabilities of the under-
lying pitches being present in the input signal with a reso-
lution of 20 cents. Then, using this salience intermediate
representation, they use a threshold to estimate multiple
frequencies at each frame.

These methods are capable of extracting multiple f0 from
a great variety of audio signals, including music and speech.
Most of them are designed for polyphonic signals where
each melody is produced by a single source: one instru-
ment or singer. However, the subject of our study are
choirs, which involve unison ensemble singing, i.e. perfor-
mances where several people sing the same notes. Unison
recordings are challenging for multi-f0 estimation because
of the possible imprecision in the pitch produced by multi-
ple singers or musicians [9]. Since we focus on the analysis
and synthesis of choral singing, it is crucial to take this as-
pect into account to build models that consider these pitch
imprecision.

3. PROBLEM DEFINITION AND APPROACH

The characterization of pitch distribution in unison and choir
singing has not been widely studied. Most of the research
in this topic is authored by Sundberg [11] and Ternström,
who published a review on choir acoustics [12] and car-
ried out several experiments to study f0 dispersion in uni-
son singing [13]. The authors define f0 dispersion as the
small deviations in f0 between singers that produce the
same notes in a unison performance. This magnitude is
directly related to the degree of unison, which Sundberg
defines as the agreement between all the voices sources. In
a later work, Jers and Ternström [14] measured the disper-
sion between singers and found it to range between 25 and
30 cents.

In multi-f0 estimation systems, we usually focus on the
extraction of a single pitch per source, and state-of-the-art
algorithms would then provide a f0 value for each choir
section. However, several singers produce slightly differ-
ent values in each of the voices of a choir. Then, the ques-
tion of which is the correct value to be estimated arises:
most multi-f0 estimation algorithms do not have enough
resolution to discern the individual pitches, which leads
to a potentially imprecise estimation. This suggests that
unison performances need to be treated in a different way.
Ternström [13] claims that while solo singing has tones
with well-defined properties, i.e. pitch, loudness, timbre,
unison ensemble singing has tones with statistical distri-
butions of these properties, and we need to consider those
when modeling them.

In a recent study, Cuesta and al. [1] created the Choral
Singing Dataset (see Section 4.1) to analyze f0 dispersion
in unison ensemble singing by modeling the distribution of
fundamental frequencies. Using individual tracks for each
singer, they extracted f0 curves and computed the mean
f0 as the perceived pitch and the standard deviation of the

distribution as the f0 dispersion. In Figure 1 we display an
example of the f0 trajectories of four sopranos, where we
observe that there are slight f0 differences between them.
This study found dispersion values ranging from 20 to 30
cents on average, depending on the choir section and the
song, which agrees to previous literature [13]. However,
this type of analysis requires an individual audio track for
each singer in the mixture, and this data is difficult to ob-
tain given that choirs are not recorded using this set up.
This particular limitation leads us to explore in the present
study ways of analyzing choir recordings directly from the
singer mixture, which involves dealing with four different
melodies (SATB), each of them involving a unison.

Figure 1: F0 curves of four sopranos singing the same note.
We see how the curves oscillate and differ from each other.

In this study, we propose a methodology for pitch con-
tent analysis on unison ensemble singing that has two main
stages:

1. Multi-f0 estimation. In the first stage, we perform
multi-f0 estimation in the audio mixture in order to
roughly estimate the pitches of the four voices of the
choir. For this part, we evaluate the performance of
a set of existing multi-f0 estimation systems in the
context of vocal quartets, where we have precise f0
ground truth information, to select the one with a
better performance.

2. F0-dispersion modeling In the second stage, we re-
fine the frequency analysis around those pitches to
further characterize f0 dispersion in each of the uni-
son voices. In order to do so, we consider a DSP-
based approach and adapt a method with higher fre-
quency resolution to model each melodic source as
a distribution of f0s instead of a single value.

4. EVALUATION METHODOLOGY

As mentioned in previous sections, we evaluate the perfor-
mance of three state-of-the-art algorithms for multi-f0 es-
timation in vocal quartets, e.g. SATB with a single singer
per section, in order to investigate which method is more
suitable for this music material. We consider the methods
proposed by Klapuri (KL) [6], Schramm et al. (SCH) [7]
and Bittner et al. (DS) [10], all of them publicly available
and representative of the state of the art in the area.



4.1 Dataset

There are very few datasets of choral music which are an-
notated in terms of f0. In our experiments, we take ad-
vantage of the Choral Singing Dataset 1 further described
in [1]. This dataset was recorded in a professional studio
and contains individual tracks for each of the 16 singers of
a SATB choir, i.e. 4 singers per choir section. Although
each section was recorded separately, synchronization be-
tween all audio tracks was achieved using a piano reference
and a video of the conductor that singers followed during
the recording.

This dataset comprises three different choral pieces: Lo-
cus Iste, written by Anton Bruckner, Niño Dios d’Amor
Herido, written by Francisco Guerrero, and El Rossinyol,
a Catalan popular song; all of them were written for 4-
part mixed choir. This dataset is more suitable for this
study than the one presented in [9]: having the individual
tracks of each singer allows us to create artificial mixes
between voices, e.g. vocal duets or quartets, small choir,
large choir...etc. Using different combinations of all 16
singers, we created 256 SATB quartets for each piece, which
represent all possible combinations of singers taking into
account the voice type restriction, i.e. we need one singer
per voice. These vocal quartets are used to evaluate the
performance of the three algorithms.

4.2 Multi-f0 evaluation metrics

In multi-f0 estimation systems, there are multiple f0 values
per frame n. Following the terminology used by Bittner
[15], we define the ground truth value(s) in frame n as f [n]
and the estimation as f̂ [n], which denote the pitches of all
active sources in that frame.

For a given frame n we denote as true positives, TP[n],
the number of correctly transcribed pitches, and as false
positives, FP[n], the number of pitches present in the es-
timation, f̂ [n], which are not present in the ground truth,
f [n]. Similarly, the false negatives value, FN[n], measures
the number of pitches present in the ground truth which are
not present in the estimation. Based on these, we define
the following set of metrics: accuracy, precision and re-
call, and a set of errors: the substitution error (Esub), miss
error (Emiss), and false alarm error (Efa). Finally, total
error, Etot is reported as the combination of Esub, Emiss

and Efa.
All the presented evaluation metrics also have their asso-

ciated chroma versions, which considers an estimated f0 to
be correct if it is one octave apart from the corresponding
target pitch. For more details about these metrics we refer
the reader to [15].

5. MULTI-F0 ESTIMATION RESULTS

All the SATB quartets of the dataset were evaluated in
terms of multi-f0 estimation: by means of the individual
tracks, we extracted f0 curves for every singer using the
spectral-amplitude autocorrelation (SAC) method [16] and

1 Choral Singing Dataset: https://zenodo.org/record/
1319597

we then combined them to create the multiple f0 ground
truth at each frame.

A summary of the results is displayed in Figure 2, where
we present the accuracy, recall and precision averaged for
each of the algorithms in the three songs of the dataset.
We observe that DeepSalience (DS) outperforms Klapuri
(KL) and Schramm (SCH). It is also interesting to point out
that the difference between these metrics and their chroma
versions is very small, thus suggesting that the three algo-
rithms are fairly robust in terms of octave errors. We also
observe that the algorithm by Schramm et al. has a higher
variability with respect to the other ones, suggesting that
its performance is highly dependent on the input signal.
Also, it is important to mention that while KL and DS pre-
dict multi-f0 values from a long audio file, i.e. a full choral
recording, we splitted our audio material in shorter clips
(each of them 10 seconds long) to evaluate SCH method:
the PLCA algorithm employed in this method is compu-
tationally very expensive and we could not obtain results
using the full recordings.

0.0 0.2 0.4 0.6 0.8 1.0
Score

Recall

Precision

Accuracy

Averaged results
DS
KL
SCH

Figure 2: Accuracy, precision and recall for each of the
three algorithms (DS, DU, SCH) averaged over all the
dataset, i.e. all the SATB quartets.

In terms of error analysis, Table 1 provides the average er-
rors for each of the algorithms. These results suggest that
extracting multiple frequencies from a vocal ensemble is a
very challenging task, since the total error is almost 40%
in the best performing method. A part from this, we can
extract a few more insights: all algorithms have a very low
false alarm error, which means that they almost never re-
port an f0 when there is not one in the ground truth; in
addition, DeepSalience does a good job regarding the sub-
stitution error, which means that it rarely reports a wrong
f0. However, the miss error is pretty high, especially in
Klapuri’s algorithm, which means that there are a lot of f0
that are not extracted. In the case of Schramm’s method,
though, the miss error is lower, suggesting that their voice
assignment step improves the performance of the multi-f0

https://zenodo.org/record/1319597
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DS SCH KL
Substitution error 2.3% 10% 12%
Miss error 35% 28% 48%
False alarm error 0.4% 1.5% 8%
Total error 38% 40% 67%

Table 1: Summary of error metrics in multi-f0 estimation .

estimation. We could also relate these differences to the
fact that SCH is the only method designed for and trained
with singing voice data. However, given the length limi-
tation of SCH and based on the overall results, we select
DeepSalience as the method to be used in the first stage of
our model.

6. F0 DISPERSION MODELING

The first step of our method presented above uses Deep-
Salience to extract multiple pitch estimations at each frame
of the audio input. In the ideal case, at this stage we would
obtain one f0 value for each choir section; however, as
discussed in Section 5, although DeepSalience is the best-
performing algorithm from the evaluated set, there are still
some errors in the output.

In the second stage of our method we consider traditional
DSP techniques to increase the frequency resolution of our
model. We compute the spectrogram of the input audio sig-
nal using a Hanning window of 4096 points zero-padded
to twice its length, resulting in an FFT size of 8192. An
excerpt of this spectrogram is displayed in Figure 4 with
magnitude in dB and the frequency axis in cents, where
we observe that f0 values for each choir section are well-
separated.
With this time-frequency representation, we then locate
each of the estimated fundamental frequencies (DeepSalience
output), which will ideally match one of the spectral peaks.
Even though we use a large FFT size, since we want to ob-
tain a high pitch resolution, we interpolate the peaks and
recompute the peak locations as the maximum value of
each interpolated peak. This process is illustrated in Fig-
ure 3, where the top and bottom plots correspond to a vocal
quartet and full choir spectrum, respectively. The dashed
black line represents the original spectrum, while the red
solid lines and the green asterisk correspond to the inter-
polated peaks. We observe that the peaks in the full choir
case (bottom) have less energy and are a bit more noisy
than the vocal quartet ones (see third and sixth peaks for
example).

Once we have this information, we compute the band-
width of each peak as a measure of the dispersion of the
f0 distribution in the unison case. Remember that our aim
is to characterize the distribution of f0 for each choir sec-
tion rather that obtaining a single f0 value. For each choir
section, we find and interpolate the peak in the spectrum
and consider the peak frequency as the mean frequency of
the distribution and its bandwidth as its dispersion. The
bandwidth is expressed in cents (computed with a refer-

Figure 3: Example frames of the spectrum with the inter-
polated peaks corresponding to the estimated f0s (green
asterisk). The top plot corresponds to a 4-singers audio
input (quartet), while the bottom plot corresponds to the
16-singer audio input (full choir).

ence frequency of 220 Hz) and computed as follows:

f0dispersion = b2 − b1 (1)

where b2 and b1 are the frequency bins around the spectral
peak where the amplitude of the spectrum decays 3 dB.
Note that in this first approach we do not take into account
the window type and size used in the spectral analysis, al-
though they influence the peak bandwidth. In further stud-
ies, we plan to study and document the effect of these two
analysis parameters in the dispersion computation.

Figure 4: Spectrogram (zoomed) of the piece Locus Iste
computed using a Hanning window and N = 4096 zero-
padded to twice its length, resulting in an FFT size of 8192.



Figure 5: Example frame of the spectrum with the interpo-
lated peaks and the boundaries for the bandwidth compu-
tation.

7. RESULTS

In this Section we present the results of the dispersion anal-
ysis averaged by piece and by choir section. Since the first
step of the presented framework outputs noisy multi-f0 es-
timations, the results of the second step displayed here are
obtained using the ground truth pitch values to locate the
peaks. This allows us to perform a better evaluation of the
dispersion computation method, since the errors that come
from the multi-f0 estimation are not present here. In the
real application, the ground truth pitches would be replaced
by the output of the selected multi-f0 estimation algorithm.
Figure 5 shows another example frame of the analysis, with
the peak interpolation and also vertical lines showing the
bandwidth delimitation.

Table 2 provides the f0 dispersion results averaged by choir
section and piece. BTAS stand for bass, tenor, alto, so-
prano, and Q and CM are short for quartet and choir mix,
meaning that the dispersion values belong to a 4-singers
and 16-singers setting, respectively. We would expect the
dispersion values to be larger in the 16 singers case, be-
cause having several voices producing similar frequencies
might generate wider spectral peaks. The differences on
average are not very strong; however, we conducted an
independent-samples t-test to compare the performances of
vocal quartets with the full choir and found that the differ-
ences were significant. For example, there was a signif-
icant difference in the bass section of the quartet singing
El Rossinyol (M=181,SD=39) and the bass section in the
choir mix (M=191,SD=79), α = 0.05, p < 0.001. This
tendency applies to the whole dataset, although the effect
size is small (around 0.2 on average) and therefore we might
need a deeper analysis to find out if the differences are not
only statistically significant but also relevant in terms of
pitch content.

These results can not be directly compared to any ground
truth, since previous studies modeled pitch dispersion in
different ways, i.e. standard deviation of the distribution
[1] or bandwidth of the partial tones [13]. Instead, we
compare the tendency of the results with the ones obtained
by the authors in a previous study where individual pitch
tracks, and thus accurate individual f0 estimations, were
used [1]. In Table 3 we display the results from the men-

Locus Iste El Rossinyol Niño Dios
Q CM Q CM Q CH

B 231 248 181 191 227 257
(57) (130) (39) (70) 58 175

T 136 140 132 136 143 149
(30) (38) (26) (30) (31) (40)

A 100 104 98 103 105 110
(22) (25) (19) (23) (22) (28)

S 76 79 75 80 78 82
(23) (27) (16) (20) (20) (25)

Table 2: Average f0 dispersion results computed as the
bandwidth of the peaks in the whitened spectrum. Disper-
sion values are in cents. Q refers to a SATB quartet with
one singer per section and CM refers to a SATB choir mix
with 4 singers per section. Values in italics are standard
deviations also in cents.

Soprano Alto Tenor Bass
20.16 22.66 22.22 26.02

Locus Iste El Rossinyol Niño Dios
19.32 27.65 21.33

Table 3: Averaged results of pitch dispersion from [1]. All
values represent dispersion in cents, computed as the stan-
dard deviation of the pitch distribution.

tioned work, where the dispersion is averaged by choir sec-
tion (all three pieces together) and by piece (all four choir
sections together). These results suggest that the disper-
sion (in cents) is higher in the bass section of a choir, which
is also true for our results. Following basses, the presented
results have tenors, followed by altos and finally sopranos,
with the lowest average dispersion. In Table 3 we have al-
tos and tenors with very similar average values, and sopra-
nos also obtained the lowest dispersion values. Therefore,
although the dispersion magnitude can not be compared,
the trend is very similar, suggesting that the analysis is con-
sistent.

After an analysis of the results, we observe that this frame-
work has a few limitations, including that the results highly
depend on the performance of the multi-f0 estimation algo-
rithm employed in the first stage. In this paper we evalu-
ated three algorithms which are considered state-of-the-art
and DeepSalience was selected according to the evalua-
tion we carried out, but we hypothesize that using a system
specially designed for singing voice, and even for choral
singing, e.g. [7] and [9], might improve the performance
of the whole method: if the f0 estimates at each frame are
precise, then the peaks would be modelled correctly (as
happened in the dispersion evaluation), yielding more ac-
curate f0 dispersion values. However, these methods were
dismissed from the final approach because of the length
limitation [7] and because it is not publicly available [9].

The proposed framework models the f0 distribution of a
unison using two values: the f0, extracted in the first stage
and refined in the second stage, and the f0 dispersion. We



believe these values are a good descriptor for unison per-
formances, but a more complex model incorporating tem-
poral evolution analysis could also be considered and used
to estimate the quality of a choir or in choral synthesis ap-
plications.

8. CONCLUSIONS

In this paper we presented a framework for the f0 modeling
in choral singing recordings that uses a two-stage method-
ology: first, a deep learning based multi-f0 estimation sys-
tem is employed to obtain one pitch value for each choir
section; second, we locate these frequencies in a whitened
version of the spectrum of the input signal with a higher
pitch resolution. This process allows us to model each uni-
son as a distribution of f0, characterized by two values: the
mean f0 and the f0 dispersion. The preliminary results we
obtained do not show strong differences in the dispersion
between a large and a small number of singers, but more
data might reveal different patterns. Since we evaluated
this framework as a case study, more experiments will be
done in the near future, and a deeper analysis of the re-
lationship between the time-frequency representation and
the results will be carried out to make the system more ef-
fective.
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