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ABSTRACT

Systems of coupled-oscillators can be employed in a va-
riety of algorithmic settings to explore the self-organizing 
dynamics of synchronization. In the realm of audio-visual 
generation, coupled oscillator networks can be usefully ap-
plied to musical content related to sound synthesis, rhyth-
mic generation, and compositional design. By formulating 
different models of these generative dynamical systems, 
I outline different methodologies from which to generate 
sound from collections of interacting oscillators and dis-
cuss how their rich, non-linear dynamics can be exploited 
in the context of sound-based art. A summary of these 
mathematical models are discussed and a range of appli-
cations are proposed in which they may be useful in pro-
ducing and analyzing sound. I discuss these models in re-
lationship to one of my own kinetic sound sculptures to 
analyze to what extent they can be used to characterize 
synchrony as an analytical tool.

1. INTRODUCTION

Coupled Oscillators networks are dynamical systems that 
describe how ensembles of interacting elements are able 
to self-organize and synchronize over time. In terms of 
sensory perception, they have been examined in a wide 
range of fields including those related to rhythmic entrain-
ment, biomusicology, psychoacoustics, signal processing, 
and generative music [1, 2]. In the field of computer mu-
sic, there have been a plethora of synthesis techniques that 
attempt to generate interactive and collective phenomena. 
These include techniques related to additive and granular 
synthesis, microsound, swarm models, texture synthesis, 
physical modeling synthesis, and statistical signal process-
ing [3–5]. Previous work in coupled oscillators as a gener-
ative musical devices has been explored by Lambert where 
he looks at coupled oscillators as a "stigmergic" model, 
producing complex output through an audience’s interac-
tion with a system of coupled Van der Poll oscillators [6]. 
Operating within a similar territory, this paper proposes 
several generative paradigms to create sound in different
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synthesis and rhythmic schemes. Lastly, I describe one of
my own kinetic sound sculptures that was inspired from the
system dynamics of a specific coupled oscillator model.

2. MATHEMATICAL DESCRIPTION

Coupled oscillators are a broad category of interacting dy-
namical systems that describe a wide range of natural phe-
nomena such as firefly synchronization, pace maker cells,
neural networks, and cricket chirping models [7, 8]. One
of the most basic coupled oscillator models is known as
the Kuramoto model [9]. In this formulation, the govern-
ing equation for each oscillator’s phase is shown for the
ensemble in Equation (1)

φ̇i = ωi +
K

N

N∑
j=1

sin(φj − φi − αo) (1)

where φi is the phase of the ith oscillator and φ̇i is the
derivative of phase with respect to time. ωi is the intrinsic
frequency of the oscillator, i, in a population of N oscilla-
tors. K is the coupling factor and the sin(φj − φi) term
is the phase response function that determines the interac-
tion between each oscillator and the group. We can add
a phase offset or "frustration" parameter αo in the phase
response function to force oscillators into different phase
orientations or to account for a time delay in the model.

As a visual description, it’s useful to describe the system
by the movement of a "swarm of points" moving about a
circle, each point representing one oscillator with its own
intrinsic frequency drawn from a probability distribution,
g(ω) (which is generally taken to be a unimodal gaussian
distribution).

Figure 1. "Ensemble of coupled oscillators represented in
a circle map as a "swarm of points" moving about a circle
[7].

mailto:author1@smcnetwork.org
http://creativecommons.org/licenses/by/3.0/


Depending on the g(ω) from which the oscillators are
drawn, Kuramoto was able to show that in the limit as N
goes to∞, the critical coupling, Kc, will define the point
at the which the system will undergo a phase state tran-
sition characterized by collective synchrony. This critical
coupling, Kc is shown in Equation (2)

Kc =
2

πg(0)
(2)

where g(0) is the mean of the distribution of initialized
intrinsic frequencies in the set of ωi. If K > Kc the os-
cillators’ phases will begin to spontaneously align and the
system state can be said to be characterized by synchrony.

We can extract the complex order parameters, R (phase
coherence) and ψ (average phase) to solve for the system
in the limit as N goes to ∞. This modifies the govern-
ing equation to be in terms of a mean-field approximation
of the oscillators’ phases: each oscillator is no longer be-
holden to the phase of every other oscillator but is coupled
to the ensemble’s summed, average phase. This is shown
in Equation (3).

Rejψ =
1

N

N∑
i=1

ejψi (3)

The phase coherence R is a good indication of the syn-
chrony of the system at large: when R = 1 the system
exhibits complete synchrony (all phases are aligned) and
when R = 0, the oscillators are desynchronized (points
are simply running around the circle at their own intrinsic
frequency, ωi). Applying these complex order parameters
to Equation (1), we form Equation (4).

φ̇i = ωi +KR

N∑
j=1

sin(ψ − φi) (4)

We can add an external forcing term by adding another
term with a different phase response function, Λe(φi) as
shown in Equation (5).

φ̇i = ωi + Λe(φi) +KR sin(ψ − φi) (5)

Now the system equations demonstrate a trade-off be-
tween frequency alignment by external forcing and phase
alignment by the attractive coupling as a function of their
phase response curves. We can choose Λ(φ) to be from
any distribution but certain functions are associated with
different system behavior. For example, if we let Λ be a
"sawtooth interaction function" [10], we can force the os-
cillators into a "incoherent state" where all oscillators will
settle on the same frequency but with a constant phase off-
set, αo, as seen in Equation (1). Depending on N, this will
space out the oscillators to have a constant phase offset,
0 < φc < 2π.

More complex behavior can emerge when we let ωi, K,
N and Λ(φ) of Equation (5) become a function of time
as well. Additionally, even more complex behavior arises

when we let K take on different values between different
micro-ensembles of coupled oscillators.

The complex order parameters are simply one way to
evaluate the group synchrony of the system. Frank and
Richardson’s "cluster phase method" uses the complex or-
der parameters to derive another degree of synchronization
in multi-variate time series [11]. These have implications
in different sonification, synthesis and rhythmic schemes
that result from the aforementioned generative model.

3. COUPLED OSCILLATORS AS GENERATIVE
SONIC DEVICES

Using this coupled oscillator model, we can extend these
different parameters and states to synthesize sound on a
continuum of collective rhythms both at the beat and sam-
ple level. As a general paradigm, rather than solving these
N th order equations analytically (which computationally
can become intractable rather quickly), we can generate
the system output using numerical analysis and employ it
to generate sound in several different ways. As such, we
can modify the rate at which the system is generated and
map the output to sonic parameters in different perceptual
time scales. This is the crucial link that maps a theoretical
mathematical system to the sensory phenomena of audi-
tory processing. For this end, this approach can be looked
at as a sonification of the data that operates on a temporal
spectrum.

3.1 Sound synthesis with Coupled Oscillators

3.1.1 Additive Synthesis

Because these non-linear oscillators trace out sinusoidal
trajectories, the most basic synthesis method would be to
simply treat the system as an oscillator bank where each
oscillator’s instantaneous phase is a signal amplitude at
an audio rate. As the system begins to self-organize and
phase-align, their collective entrainment would be perceived
as a collection of sine waves of different initial frequen-
cies emerging to a single frequency over time. As the cou-
pling coefficient is increased to reach Kc, Fig. 2 shows
the power spectrum of a group of oscillators becoming en-
trained to the center frequency of a gaussian distribution of
oscillators from 0 to 5 kHz. Here we can see how oscilla-
tors with intrinsic frequencies near the center of frequency
distribution are recruited (or entrained) first whereas oscil-
lators near the tails of the distribution take longer to syn-
chronize to the mean frequency.

We can also replace the external forcing in Equation (5)
with the frequency content of audio that could drives the
individual oscillators. In this synthesis model, the oscil-
lators could act as a Nth order filter bank with center fre-
quencies determined by their assignable intrinsic frequen-
cies. This differs from a phase vocoder model insofar as
the center frequencies of the filter bank are not fixed in
frequency but are coupled according to some schema and
therefore allowed to deviate by some amount.



Figure 2. Ensemble of 100 sinusoidal oscillators becoming
entrained to a frequency at the center of the distribution.

3.1.2 Spectral Processing

Other more complex synthesis techniques can be derived
from extracting instantaneous phase from an input audio
file using instantaneous frequency estimation techniques
where the signal can be decomposed into a collection of
instantaneous phases (via a Hilbert Transform and phase
unwrapping). We can apply coupling between the instan-
taneous phases using coupled oscillator dynamics to per-
form transformations on the temporal or spectral informa-
tion. For example using a FFT interpretation of the phase
vocoder model, we can divide the time-varying signal into
several spectral bands and–after unwrapping each chan-
nel’s instantaneous phase–apply band-limited coupled os-
cillator networks to modulate their instantaneous phase forc-
ing them to become entrained to a center frequency within
the spectral band over time. Because the critical coupling
of Equation (2) is a function of the intrinsic frequency dis-
tribution set by g(ω), we can populate these spectral re-
gions of the input spectrum with oscillators drawn from a
gaussian distributions with µ centered around the FFT bin
center frequency. This has the effect of encouraging oscil-
lator synchronization within the channel-dependent (band-
limited, constant-Q) region. In this synthesis scheme, the
external forcing function, Λe(φi), is passed the instanta-
neous phases extracted from each of the spectral bands by
the FFT. An example is shown in Fig. 3 where a flute
playing a major scale is resynthesized using the aforemen-
tioned method. This example makes use of 130 oscillators
split into 10 coupled groups where coupling is increased
over the duration of the sound file ultimately resulting in
full synchrony per band-limited group.

Ultimately, this coupled-oscillator phase vocoder model
would allow the frequency content of an input audio sig-
nal to modulate and synchronize the frequency content (or
spectral entrainment) of the source sound. Sounds that are
characterized by spectra that conforms to certain harmonic
relationships could force the coupled oscillators into differ-
ent periodic or synchronous states. Clearly, because this
method utilizes phase vocoding analysis, it would work

Figure 3. Spectrum of flute playing a major scale (top).
Phase vocoder coupled oscillator resynthesis using ten
coupled oscillator networks (bottom).

best with analysis techniques that prioritize horizontal phase
coherence over vertical phase coherence.

3.2 Rhythmic Generation: Coupled Oscillators as
Control Signals

We can use the dynamics of the coupled oscillator system
to control rhythmic generation or musical parameters. The
idea of synchronization lends itself well to many aesthetic
ideas of minimalist and procedural music where musical
parameters are slowly modulated over time.

If we set the coupled oscillator ensembles to be iterated
at a rate that is well below a sampling rate suitable to audio
synthesis, we can use Equation (5) to trigger audio events
when the instantaneous phase of each oscillator φi encoun-
ters a zero-crossing. To accomplish this, we can trigger an
"audio event" using the basic sonification scheme detailed
in Equation (6) below.

audio event(φi) =

{
1, if φi−1 < φi

0, otherwise
(6)



Therefore, as each oscillator completes one cycle (crosses
the zero-point of the circle), they trigger a sound such as
the playback of a sample. The system generates complex
rhythmic behavior when different groups of oscillators take
on different coupling coefficients to form microensembles
that are locally coupled. When the system parameters are
modulated over time, the system can be forced into differ-
ent polyrhythmic relationships that converge and devolve
over time.

This could also be meaningfully applied to musical forms
by allowing the instantaneous phase of each oscillator to
control the position of a virtual "playback" head of a rhyth-
mic figure to create complex temporal canons that can be
brought together in temporal unison by adjusting the cou-
pling coefficients over time. Similarly in the realm of syn-
thesis, we could allow the instantaneous phase to control
the playback (or the index of a buffer) of a sampled sound
file in a buffer. In this paradigm, the system produces con-
trol signals to modulate parameters of a piece of music.

4. SONIC PHENOMENA AND COUPLED
OSCILLATORS

If these mathematical models are sufficiently generalizable
and applicable to musical analysis, they can describe and
generate a plethora of meaningful musical techniques with
examples taken from contemporary music composition and
sound art. Perhaps the most axiomatic example demon-
strating collective perceptual entrainment is Györgi Ligeti’s
Poème Symponique” (1962) for 100 metronomes [12]. In
this piece one-hundred metronomes are pre-wound, set to
different tempos, and then triggered en masse. As each
metronome comes to rest at different times, the dynam-
ics of the ensemble at large are well modeled using a un-
coupled oscillator model where each metronome is set to
a different ωi. As different auditory streams of periodic
rhythm are presented concurrently, the listener latches onto
different frames of temporal reference where a sense of
beat (induction) emerges from their competing periodic
stimuli. Modifying Ligeti’s original piece by coupling the
metronomes by placing them onto a low-friction surface
such as a table with wheels, the mechanical movements
of the pendulums will begin to couple their swinging mo-
tion to one another. If coupling is sufficiently strong, the
metronomes will become phase-aligned to tick at a mean
frequency [13].

The simultaneity of periodic rhythms characterized by
Poème Symphonique can also be well applied to the anal-
ysis of acoustic crowd dynamics where researchers have
used coupled oscillator models with spatial mean-field cou-
pling to account the physics of crowd applause [14]. This
acoustic phenomena bears resemblance to many stochas-
tic generative methods that are capable of modeling the
sound of natural phenomena (e.g. rain, hail, wind, etc.).
However, the potential of the system to be controlled to
self-organize over time might allow for interesting forms of
collective synchrony that emerge amidst the dense acous-

tic textures characterized by nature. In terms of acoustic
signalling in animal populations, coupled oscillator sys-
tems have been used to describe many different forms of
biomusicological phenomena particularly those related to
chorusing and stridulation [1,15,16]. Using research from
these biomusicological models, generative chorusing syn-
thesis that incorporate coupled oscillator synchronization
methods could be an interesting avenue of exploration in
sound generation and user interface design.

4.0.1 Compositional Techniques

In terms of music analysis and composition, coupled oscil-
lator dynamics of synchrony can be thought of as a tempo-
ral canon in which different fugal patterns are stretched and
compressed over time to conform to a governing tempo-
ral duration. In the minimalist genre, the rhythmic “phas-
ing” effect in Steve Reich’s music (e.g. “Clapping Mu-
sic”, “Come Out”, “Piano Phase”) could be approximated
by a coupled oscillator model that converges in and out
of synchrony. "Phasing" could be accomplished by set-
ting an ensemble of oscillators with different initial phases
but the same intrinsic frequencies and phase-aligning them
over time. Reich himself has intuited that in this composi-
tional technique, “[t]he listener becomes aware of one pat-
tern in the music which may open his ear to another, and
another, all sounding simultaneously and in the ongoing
overall texture of sounds." [17]. His formulation of pattern
as rhythm reinforces similar perceptual notions of Ligeti’s
Poème Symphonique insofar as that the listener has access
to simultaneous layers of competing perceptual informa-
tion and that auditory feedback allows certain phenomena
to take precedence over others.

Lastly in the field of sound-based art, several contempo-
rary artists have experimented with auditory phenomena
that is well-modeled by coupled oscillator systems. These
include works by Zimoun, Pei Lang, and Céleste Boursier-
Mougenot [18]. These artists are known for their use
of multiples of sound objects set in repetitive motion to
create large masses of sound from simple additive means.
For instance, Zimoun’s installation-based work employs
hundreds of kinetic objects to construct complex sound
masses in physical environments. Taken to the extreme,
these sound sculptures make use of a material-oriented ad-
ditive synthesis that could be approximated by dynamical
system models.

5. MODELLING SYNCHRONY THROUGH
SCULPTURAL FORM: HIVEMIND

The rich musical dynamics inherent in coupled oscillator
networks have inspired my own sonic investigations in an
attempt to experiment with how to exploit these systems
in physical, sculptural form. Much of my understandings
of coupled oscillator dynamics in sound have been through
the development of computational models that have allowed
me to interact with this dynamical system through mathe-



matical analysis and numerical analysis 1 . For these pieces,
I’ve written programs to explore numerical analysis (python),
user interaction in real-time (SuperCollider), and perfor-
mance based programs (CHuCK) to allow me experiment
with the system behavior under different parameterizations.
This repository also hosts several synthesis implementa-
tions mentioned in section 3.1.

5.1 Audio-visual Resonance: "Hivemind"

Figure 4. "HiveMind" at Pioneer Works Brooklyn,NY.
video: https://vimeo.com/127874298

Figure 5. Kinetics of audio-visual resonance of "Hive-
Mind" sound sculpture: clay bowls as driven coupled os-
cillators

"Hivemind" explores the sonic potentials of ceramics by
revealing the pitched resonance of porcelain bowls using a
coupled-oscillator mechanical system. Two reciprocating
platforms are populated with over 300 clay vessels with
marbles placed about the inner bowls. By modulating the
speed of the applied pushing motion (see Fig. 5), this
piece surveys the acoustic potential of ceramic as mate-
rial by exposing the audio-visual "resonance" of different
bowls. When this pushing motion matches the natural ro-
tational frequency of the bowl’s topography, the marble be-
gins to rotate and loop with more velocity thereby ampli-
fying the characteristic resonance of the bowl. Because
each bowl contains a different resonant frequency, clus-
ters of similarly-sized bowls can be amplified to create
slowly-changing bell-like sonorities. The pushing motion
of the two platforms drive the system into different dy-
namic states to form a time-based composition of audio-
visual resonance.

1 for more information, see my code repository: https://
bitbucket.org/no_lem/kura-python/

From the perspective of coupled oscillation, the recipro-
cating platform can be thought of as a type time-dependent
external forcing factor, Λe(φi, t) from Equation (5) that
drives the system. Because the marbles’ motion are be-
holden to this external force, each bowl can be looked at
as a resonant filter at some center frequency determined by
their shape. The input to these filters is simply the pushing
motion by the reciprocating platform and their audible out-
put is the sum of their (damped) oscillations. Even though
the individual marbles are not explicitly coupled to one
another, they resonate in concert with the frequency (and
amplitude) of the external sinusoidal pushing force. To ex-
plicitly couple the oscillators, one would have to resort to a
different physical implementation that would allow the in-
stantaneous phase of each physical object to interact with
the others.

6. CONCLUSIONS

This paper looked at the extent to which coupled oscillators
can be useful to describe a wide range of musical phenom-
ena by demonstrating several ways in which they model
synchronous auditory phenomena. There’s still much terri-
tory to be explored in this area of applied musical research.
For instance, this paper only looked at one such synchro-
nization scheme–the Kuramoto model–to describe a type
of self-organization. There are several other synchroniza-
tion models (pulse-coupling, sync and swarm models, Van
Der Poll oscillators, etc.) that could be exploited in the
context of art and music generation. Similarly, this pa-
per only briefly mentioned several applications related to
digital signal processing, rhythmic generation, or music
perception. One particularly promising area of research
is neural resonance theory in the context of beat induc-
tion and meter perception as posed by Large [2]. As
an outgrowth of dynamic attending theory, his canonical
model accounts for the entrainment of endogenous cor-
tical rhythms from the acoustic rhythms of the external
world [19]. More importantly, his canonical model is de-
rived from a coupled-oscillator model of dynamical sys-
tems. Future research learning how to integrate these no-
tions of perceived beat and rhythm into different generative
models would be well served in the area of music creation
and sound art.
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