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ABSTRACT

The tuning of a piano is a complicated and time-consuming 
process, which is usually left for a professional tuner. To 
make the process faster and non-dependent on the skills 
of a professional tuner, a semi-automatic piano tuning sys-
tem is developed. The aim of the system is to help a non-
professional person to tune a grand piano with the help of 
a computer and a motorized tuning machine. The sys-
tem composes of an aluminum frame, a stepper motor, 
an Arduino processor, a microphone, and a laptop com-
puter. The stepper motor changes the tuning of the piano 
strings by turning the pins connected to them whereas the 
aluminum frame holds the motor in place. The Arduino 
controls the motor. The microphone and the computer are 
used as a part of a closed loop control system, which is 
used to tune the strings automatically. The control system 
tunes the strings by minimizing the difference between the 
current and optimal fundamental frequency. The current 
fundamental frequency is obtained with an inharmonicity 
coefficient estimation algorithm, and the optimal funda-
mental frequency is calculated with a novel tuning pro-
cess, called the Connected Reference Interval (CRI) tun-
ing. With the CRI process, a tuning close to that of a pro-
fessional tuner is achieved with a deviation of 2.5 cents 
(RMS) between the keys A0 and G5 and 8.1 cents (RMS) 
between G#5 and C8, where the tuner’s results are not 
very consistent.

1. INTRODUCTION

Tuning a piano is known to be a complicated process, 
which takes a considerable amount of time and effort. To 
many musicians tuning all the 200 plus strings of the in-
strument is a daunting task, especially as doing it incor-
rectly may leave the instrument in even worse tune. Be-
cause of this the tuning of a piano is usually left to profes-
sional tuners.

The scale of a piano is based on the twelve-tone equal 
temperament scale (12-ET), which specifies the fundamen-
tal frequency of each key. The difficulty of tuning a pi-
ano comes from the fact that, because mode frequencies
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of piano strings deviate from the harmonic series, in a phe-
nomenon called inharmonicity, tuning the fundamental fre-
quencies of the strings to follow the 12-ET scale leads the
instrument to sound out of tune [1]. Instead, professional
tuners use the beating effect, produced by two frequencies
close to each other, to tune the instrument, as the 12-ET
scale specifies beating rates for each interval [2].

To make the process of tuning a piano faster and non-
dependent on the skills of a professional tuner, a semi-
automatic piano tuning system is developed in this work.
There have been related previous developments, e.g. [3],
but an automatic piano tuning system is still not commonly
used. The proposed tuning system is aimed towards tuning
a grand piano with the help of a non-professional tuner.
The system includes a stepper motor, an aluminum frame,
an Arduino Uno [4], a microphone and a computer.

The system uses closed loop control to change the funda-
mental frequency of a string from the current frequency to
a target frequency. The current fundamental frequency is
determined by an inharmonicity coefficient estimation al-
gorithm. The target frequency is determined by a novel
tuning process, called the Connected Reference Interval
(CRI) tuning process, which calculates the optimal fun-
damental frequency for each string based on the beating
rates between the current and previously tuned strings. The
change from current to target fundamental frequency is im-
plemented with a Proportional-Integral-Derivative
(PID) controller, which is discussed later in more detail.

There have been previous algorithms that are designed to
find the optimal tuning for a piano, but these algorithms
require all or some of the strings to be recorded before tun-
ing [5–7], unlike the CRI tuning process, which calculates
everything while the tuning is done.

The paper is structured as follows. In Section 2 the struc-
ture of the piano tuning robot, in charge of turning the pins
of the piano, is described. Next, in Section 3 the control
system which automatically changes the tune of a string to
a desired tuning is discussed. The system needs the current
fundamental frequency, discussed in Section 4, and the tar-
get fundamental frequency, described in Section 5 to tune
the string. The accuracy of the CRI tuning system is also
evaluated in Section 5. Finally, Section 6 includes conclu-
sion of the project as well as discussion about the future of
the system.
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Figure 1. Proposed piano tuning system with the Arduino
processor near the midpoint of the picture and the stepper
motor on its left-hand side, attached to the topmost alu-
minum bar.

2. STRUCTURE OF PIANO TUNING ROBOT

In the process of tuning a piano, tuners use a lever to tune
the strings of the piano. The lever is used to turn a pin
which has a string wrapped around it. Turning the pin
changes the tension of a string and this change in tension
determines the fundamental frequency of the string accord-
ing to:

f0 =
1

2L

√
T

m/L
, (1)

where L is the length of the string, m is the mass of the
string and T is the tension of the string. The fundamental
frequency of a string (along with the inharmonicity coef-
ficient which will be discussed later) determines the mode
frequencies (partials) that tuners listen to when tuning the
instrument.

The first step in making an automatic piano tuner was
to create a structure which allows the automatic control
of string tension. The proposed structure (stepper motor,
aluminum frame and Arduino) is able to turn the pins of
the piano with high precision (small angle) and has enough
torque to turn even the tightest strings. The Arduino is able
to turn the pins of the piano depending on input given by
the computer with a program uploaded to it. The prototype
structure can be seen in Figure 1.

3. CONTROL SYSTEM

The control system used to automatically determine the
number of steps needed to change the fundamental fre-
quency of a string from current to a desired value, is a
closed loop control system. The general structure of a
closed loop control system can be seen in Figure 2a. The
system has a reference value as its input, and the aim of
the control loop is to minimize the difference between the
reference and the value measured from the output of the
system with the sensor. This is accomplished with the con-
troller, which changes the input to the process based on the
difference between the reference and the measured output.

ProcessController

Sensor

Process  
input

–
+

Reference

Measured output

Measured  
error Process output

Stepper
motorArduino

Microphone
& computer

Steps

–
+

f0, target
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f0,target – f0,current 
Tone
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Figure 2. Block diagram of (a) a general closed loop con-
trol system (b) closed loop control system used in the piano
tuning robot.

Figure 2b shows a diagram of the piano tuning system.
In the piano tuning system the Arduino is used as the con-
troller as the microprocessor has enough processing power
to do this task and it controls the number of steps that the
stepper motor takes. The process is the stepper motor turn-
ing a pin and thus affecting the fundamental frequency of
the string attached and the process output is a tone pro-
duced by the string. To be able to measure the fundamen-
tal frequency of a string based on the tone, a microphone
and computer are added to the system. In addition to work-
ing as the sensor, providing the measured output, the two
components provide the reference as well, as information
extracted from the current tone as well as previous tones
is used to calculate the target frequency. The difference
between the current and target fundamental frequency is
used by the controller (Arduino) to calculate the appropri-
ate number of steps the stepper motor should take.

A PID (proportional-integral-derivative) control scheme
is used by the Arduino to control the stepper motor. PID
controller calculates the error value e(t) between the refer-
ence (f0,target) and measured output (f0,current) and ap-
plies a correction to the process based on proportional (P),
integral (I) and derivative (D) terms. This control value
u(t) (number of steps) attempting to minimize the differ-
ence between the reference and measured output is then
applied to the process.

4. FUNDAMENTAL FREQUENCY

The fundamental frequency of a string can be estimated
looking at the spectrum of its tone. This is done by finding
spectral peaks belonging to mode frequencies of the string.
The relationship between these partials and the fundamen-
tal frequency is affected by an effect called inharmonicity.
In this section, inharmonicity as well as algorithms for esti-
mating the fundamental frequency of a string are reviewed.

4.1 Inharmonicity

The partials of an ideal string are integer multiples of its
fundamental frequency (harmonics). However, real strings
have stiffness, which acts as a restoring force, making the
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Figure 3. Inharmonicity coefficients of piano strings cal-
culated with an inharmonicity coefficient estimation algo-
rithm from tones recorded from a Yamaha grand piano.
The strings for keys 1–7 are wrapped twice in wire, those
of keys 8–26 are wrapped once, and the rest of the strings
are unwrapped.

mode frequencies deviate from the harmonic series. This
deviation is called inharmonicity and the effect is greater
with higher modes, as they have more bends [8].

The mode frequencies of piano strings can be calculated
from the following equation [9]:

fk = kf0
√

1 +Bk2, (2)

where fk is the frequency of the kth mode (also known as
the kth partial), f0 is the fundamental frequency, and B is
the inharmonicity coefficient of the string. The value of
inharmonicity coefficient of a solid string depends on the
length, tension and radius of the string according to the
following equation [8]:

B =
π3r4E

8TL
, (3)

where r is the radius of the string, E is Young’s modulus,
T is tension, and L is the length of the string. The strings
in the bass end are wrapped in wire to lower their funda-
mental frequency by increasing their linear mass. This in-
creases their inharmonicity slightly from Equation 3, but
not as much as adding the linear mass by increasing the
radius of the solid string.

Inharmonicity coefficient values of a Yamaha grand piano
can be seen in Figure 3. It can be seen how the short strings
in the treble of have inharmonicity coefficients close to
1e−2 and the long bass strings have inharmonicity coeffi-
cients close to 1e−4. It can be also seen how the values of
inharmonicity coefficients increases towards the bass end,
as the strings are wrapped in one or two layers of wire.

4.2 Inharmonicity Coefficient Estimation

Inharmonicity coefficient estimation algorithms find spec-
tral peaks belonging to partial frequencies and make esti-
mations for the inharmonicity coefficient and fundamen-
tal frequency based those values. These algorithms need
rough estimations for the values of B and f0 and make
better ones based on the found partial frequencies. The
difficulty of finding spectral peaks, belonging to partial

frequencies, comes from distinguishing partial frequencies
from other spectral peaks.

There has been many algorithms tackling the issue of par-
tials frequency estimation [10–14], but most of these algo-
rithms suffer from high computational complexity. As the
control system of the piano tuner needs the sensor (micro-
phone and computer) to calculate the value of fundamental
frequency on every iteration loop, the chosen algorithm has
to be fast as well as accurate.

The Median-Adjustive Trajectories [14] (MAT) algorithm
for estimating the inharmonicity coefficient best fulfills the
accuracy and runtime requirements of the piano tuner. The
algorithm calculates estimations for B and f0 based on the
frequencies of known partials, and finds new partials based
on these estimations. The algorithm is based on the idea
that if the frequencies of two partials are known, the value
of B can be calculated purely based on their values.

If equation 2 is solved in terms of fundamental frequency,
with partial number m:

f0 =
fm

m
√

1 +Bm2
, (4)

and then 4 is substituted into equation 2 for partial k:

fk = kf0
√

1 +Bk2 = k
fm

k
√

1 +Bm2

√
1 +Bk2. (5)

The value of B can be solved from this equation:

B =
(fk

m
k )2 − f2m

k2f2m −m2(fk
m
k )2

. (6)

This means that if the frequencies of first two partials can
be found from the spectrum of the tone, an estimation for
the value of B can be made. As the first two partials do
not deviate very much from the harmonic series, these can
be found with good initial estimations of f0 and B. This
newB estimation can then be used together with the found
partial frequencies to make new estimations for f0 with
Equation 4. After that, these f0 andB estimations can then
be used to find new partial frequencies from the spectrum.

Figure 4 shows the block diagram of the MAT algorithm.
The diagram shows how the initial estimates of the f0 and
B are used to find the first two partials of the tone. The
original MAT algorithm suggested that first two partials
should be found by looking at a window around frequen-
cies f0,init and 2f0,init. A small adjustment to the algo-
rithm is made by using the initial values of f0 and B in
Equation 2 to calculate estimates for the first two partials.
By doing so a slight improvement to the accuracy of the
algorithm is achieved.

After the first two partials are found, the first B estima-
tion can be made with Equation 6. This value is stored to
an array of B estimates and a median of this array is taken
to make two estimation for the value of f0. The f0 estima-
tions are then stored into an array of f0 estimations and the
median values of the B and f0 arrays are used in Equation
2 to make an estimation for the value of the third partial f3.
A smaller window around the estimated value can be used
to find the partial, as the estimate is more accurate than the
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Figure 4. Block diagram of the MAT algorithm adopted
from [14]

estimation for the first two partial. The process moves on
making new estimations for B, f0 and partial frequencies
until the found partials have a magnitude below a speci-
fied threshold. At this point the median of the B and f0
estimation are then used for the final estimations.

With this method the estimation for the current value of
f0 is gotten. These f0 and B estimates will also be used in
the CRI tuning process, as they can be used in Equation 2
to represent the partial frequencies of the string, which are
used to calculate beat rates between piano strings.

5. CRI TUNING PROCESS

The CRI tuning process determines a target frequency for
every piano string. The process specifies the order of tun-
ing so that as many intervals as possible can be used to
calculate the target fundamental frequency. The keys of
the piano are connected to one, two or three strings, and
all the strings connected to the same key are called a string
unison. The tuning process specifies that a single string
from each string unison is to be tuned at first, using single
strings from other unisons as a reference, and after that, the
rest of the strings in the same unison are tuned using the
tuned string as a reference. The other strings in the unison
are tuned to have approximately a 1.5 cent difference to
the reference as that maximizes the decay time of the com-
bined strings [15]. From here on, the tuning process talks
only about the single string of every string unison, which
is tuned using single strings of other unisons as reference.

Strings are tuned one by one starting with a reference tone
(A4) which is tuned to a reference frequency, and after that,
the rest of this strings are tuned in the following order: ref-

erence octave (F3 to F4), tones above the reference octave
(F#4 to C8) and tones below the reference octave (E3 to
A0).

The target fundamental frequency for each string is found
by optimizing the beating rates between the string that is
currently tuned and all the strings that have been already
tuned and are a certain interval away from that string.

5.1 Beats

When a tone contains two frequencies that are close to each
other, the frequencies cause periodic changes in the ampli-
tude of the tone. These amplitude modulations are called
beats and the frequency of these modulations can be calcu-
lated from equation [16]:

fB = |f2 − f1| = ∆f, (7)

where f1 and f2 are the two frequencies close to each other.
Equation 7 applies only until a certain point. As the two
frequencies get further away from each other the frequency
of beats gets faster at first, until unpleasant roughness be-
tween the two frequencies emerges. From this roughness
two distinct tones can be heard after ∆f exceeds the limit
of frequency discrimination and after ∆f surpasses the
critical band, the roughness disappears and only two dis-
tinct frequencies can be heard [16].

5.2 Scale of the Piano

The tuning of a piano is based on the equal temperament
scale, which makes all the steps in the scale equal. This
means that the ratio between fundamental frequencies of
subsequent tones in the scale should be the same. More
specifically the scale is a twelve-tone equal temperament
scale (12-ET) which in addition to having equal steps spec-
ifies the ratio between an octave to be 2:1 (f0 of the lower
tone is two times the f0 of the higher one) and divides each
octave into twelve steps. The ratio of 2:1 and 12 equal steps
leads a single step in the scale to have a ratio of 12

√
2:1, as

12 12
√

2 = 2.
The distance between two tones in a scale is called an in-

terval. Musical scales are usually designed so that some
partials of two harmonic tones having a certain interval
line up to produce the minimum level of roughness be-
tween tones. This is achieved by designing fundamental
frequencies of the intervals to have certain frequency ra-
tios, as harmonic overtones are integer multiples of the
fundamental. For example, if the fundamental frequencies
of two tones have frequency ratio of 2:1, the 2k partials of
the lower tone match with the k partials of the higher one
(k = 1, 2, 3...). The names of these intervals and ratios
of their fundamental frequencies are listed in the first two
columns of Table 1.

The way the 12-ET scale is designed leads all other in-
terval ratios except for the octave to deviate. The amount
of deviation per interval can be seen in the third column of
Table 1. This deviation is measured in cents, which is a
logarithmic unit, expressed as:

Deviation = 1200 log2 (b/a), (8)
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Figure 5. The first two matching partials in the octave be-
tween Bb7 and Bb8.

where the deviation is positive if b is greater than a. The
Distance column in Table 1 shows the number of steps
(semitones) is between each interval in the 12-ET scale.

This deviation leads the intervals to have specific beating
rates, which tuners use to tune the instrument. The reason
why the fundamental frequencies of the 12-ET scale can-
not be used to tune the instrument is because piano strings
are inharmonic, and thus the spacing of fundamental fre-
quencies specified by the scale do not produce wanted beat
rates. Instead the spacing is slightly wider as the partials
deviate upward from the harmonic series. This leads the
tuning of the piano to be ”stretched”, meaning that when
compared to the 12-ET scale, a tuning performed by a pro-
fessional tuner is slightly higher in the treble and lower in
the bass. Also, as the inharmonicity is different with each
string, it is impossible for all the partials that are integer
multiples of the frequency ratios to have the same beating
rate. Because of this, piano tuners listen to all beats and
tune the strings in such a way that none of the prominent
beats deviate too much from the desired beating rate.

An example of this can be seen in Figure 5 which shows
the partial frequencies and magnitudes of the octave be-
tween Bb7 and Bb8. According to Table 1 the beating rate
and thus the difference between the two sets of frequen-
cies (2:1 and 4:2) should be zero, but this is not possible
as matching either of the two sets would leave the other
one to have even more deviation. Instead the tuner has
made a compromise. The second partial of Bb7 is tuned

Interval Ratio Deviation Distance
Octave 2:1 0 12
Perfect fifth 3:2 -1.96 7
Perfect fourth 4:3 +1.96 5
Major sixth 5:3 +15.64 9
Major third 5:4 +13.69 4

Table 1. Several intervals. The ratio tells which partials
of the lower tone is closes to the partial of the higher tone
(partial of lower tone : partial of higher tone). The de-
viation tells how much deviation there is between these
partials according to the 12-ET scale. The distance is the
number of semitones between the two tones.

slightly below the frequency of the first partial of Bb8 and
the fourth partial of Bb7 is tuned slightly above the second
partial of Bb8.

Electronic tuners that use partial frequencies of octaves to
tune a piano match only a pair of partials. For example, a
2:1 method of tuning octaves matches only the second par-
tial of the lower tone with the first partial of the higher tone
and a 4:2 method of tuning octaves uses only the fourth and
the second partial [6].

5.3 Calculating Target Frequencies

As the 12-ET scale specifies beating rates for each interval,
and those beating rates should be calculated as the differ-
ence between the inharmonic partials of piano tones, the
values of f0 and B obtained with the MAT algorithm can
be used find the fundamental frequency that provide said
beat rates. The beating rate in cents between two frequen-
cies within a certain interval can be calculated from equa-
tion:

1200 log2

(
fl,n+m

fk,n

)
, (9)

where c is the difference in cents, fk,n is the kth partial
of the nth tone and fk,n+m is the lth partial of the tone
which has a m semitone difference (interval) from n. The
values of c, k, l and m for the first matching partials of
each intervals can be seen in Table 2 (for other matching
partials integer multiples of k and l are used and all other
variables stay the same).

Equation 9 can be rewritten in terms of f0 andB by using
Equation 2 to calculate partial frequencies:

1200 log2

lf0,n+m

√
1 +Bn+ml2

kf0,n
√

1 +Bnk2
− c = 0. (10)

When Equation 10 is used to calculate the sum of multi-
ple intervals with the same tone n, the following equation
is obtained:

N−1∑
i=0

[
log2

(
lif0,n+mi

√
1 +Bn+mi

l2i
kif0,n

√
1 +Bnk2i

)
− Ci

]
= 0,

(11)
where N is the number of intervals used for the tuning and
ki, li, mi, and ci are the values k, l, m, and c, respectively,

Interval c k l m
Octave (up) 0 2 1 +12
Perfect fifth (up) -1.96 3 2 +7
Perfect fourth (up) +1.96 4 3 +5
Major sixth (up) +15.64 5 3 +9
Major third (up) +13.69 5 4 +4
Octave (down) 0 1 2 -12
Perfect fifth (down) +1.96 2 3 -7
Perfect fourth (down) -1.96 3 4 -5
Major sixth (down) -15.64 3 5 -9
Major third (down) -13.69 4 5 -4

Table 2. Values of c, k, l and m for several intervals.



for a specific interval and Ci equals

Ci = 2ci/1200. (12)

An estimation for the value of f0,n can be made by solv-
ing it from Equation 11 with the assumption that the inhar-
monicity coefficient of the string does not change during
the tuning. This estimate is fairly accurate as the change
in tension changes f0 much more than B. Other coeffi-
cients in the equation are known, as n +m is the index of
a previously tuned string with known values of f0 and B.
It should be noted that the intervals used for this tuning are
a design choice and that some intervals will get a tuning
closer to that of a human tuner, as human tuners use only
specific intervals to tune the instrument [2].

When f0,n is solved from Equation 11, the following
equation is obtained:

f0,n =

( ∏N−1
i=0 Ai∏N−1

i=0 2ci/1200

)1/N

, (13)

where

Ai =
lif0,n+mi

√
1 +Bn+mi

l2

ki
√

1 +Bnk2i
. (14)

The fundamental frequency of piano strings can be com-
puted using Equation 13 by comparing multiple intervals.
However, as the equation uses one set of partials per inter-
val, the process does not take higher partials into consider-
ation.

5.4 Weights

To take all the audible beats into consideration in a sim-
ilar way as an human tuner does, weights can be added
to Equation 13. The weight of a set of partials produc-
ing beating within an interval is calculated by taking the
maximum loudness of the beating effect as well as mask-
ing into consideration. Masking is a phenomenon in which
soft sounds cannot be heard because of loud ones occur-
ring at the same time, or in other words, louder sounds
mask softer sounds. When weights are added to equation
13, the following form is obtained:

f0,n =

( ∏N−1
i=0 Ai

wi∏N−1
i=0 2ciwi/1200

)1/
∑N−1

i=0
wi

, (15)

where wi is the weight of a specific interval.
The weights are distributed in a way that the sum of the

weights for each interval is one, so the weight of each in-
terval is the same. The weights are calculated with the
following steps:

1. Find the magnitude of partial frequencies: The mag-
nitudes of partial frequencies can be found and stored
by modifying the MAT algorithm to do so.

2. Apply A-weighting: The A-weighting is applied to
approximate the frequency-dependent sensitivity of
human hearing.
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Figure 6. Weights (stems) of the beats between E3 and E4

(octave) and the corresponding masking thresholds.

3. Masking: An approximation of masking can be cal-
culated by using a spreading function (SF). A popu-
lar SF proposed by Schroeder is used, as it is inde-
pendent of the masking SPL, which is unknown [17].
The SF is shifted slightly lower depending on the
tonality of the masker [18].

4. Weights: After all partials under the masking thresh-
old have been taken out of consideration, the weights
for each set of partials are calculated as

wi =
Mi∑N−1

n=0 Mn

, (16)

where wi is the weight of ith matching partial, Mi

is the maximum magnitude of the beats produced by
the partials, and N is the total number of matching
partials over the masking threshold.

Figure 6 shows the weights of the octave between E3 and
E4. It can be seen that the sum of these weights is one and
that all beats under the threshold have a weight of zero.

5.5 Accuracy

The accuracy of the CRI tuning process was estimated by
comparing it to a tuning performed by a professional piano
tuner. The deviation (in cents) between the first partials
of each tuning was used for the comparison. Single string
recordings of all the 88 keys of a Yamaha grand piano were
made the next day after tuning. The tuning accomplished
by the CRI tuning process was emulated by resampling the
recorded tones.

The accuracy was evaluated without weights, using the
first matching partials for each interval, and with weights.
The appropriate kind of distribution of weights for all par-
tials of each interval could not be achieved yet, and too
much weight was given to higher partials. This led to ex-
cessive amount of stretching, much more than that of the
tuner. Because of this, only the first fifteen partials were
considered for the algorithm with weights.

Both algorithms (with and without weights) use the same
values and intervals for the reference tone and the reference
octave. A4 is used as the reference tone and the first partial
of this tone was tuned to match the first partial of A4 tuned
by the tuner. This way the tunings could be compared. The
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reference octave is tuned according to the “Defebaugh F-
F” temperament, which is a tuning scheme commonly used
by piano tuners [2].

For the algorithm without weights, matching the follow-
ing intervals gave the best result:

• F#4(46) to C8(88): Octaves

• E3(32) to F#2(22): Octaves, fifths, tenths.

• F2(21) toA0(1): Octaves, fifths, tenths, seventeenths,
double octaves, and double octaves and a third.

Figure 7 shows the order of tuning and the intervals used
for the algorithm without weights. The crosses show the
key that is being tuned whereas the circles above and be-
low it are the keys that are used as a reference. For the
algorithm with weights, using an octave and a double oc-
tave gave the best result.

Figure 8 shows the tuning curve produced by the algo-
rithm without weights. Its deviation from the tuning con-
ducted by the professional tuner is presented in Table 3.
The tuning done by the algorithm with weights can be seen
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Figure 8. Deviation of the professional tuner and the CRI
process (without weights) from 12-ET.
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Figure 9. Deviation of the professional tuner and the CRI
process with weights calculated from 15 first partials.

in Figure 9, and the corresponding deviations from the pro-
fessional tuner’s result are presented in Table 4.

It can be seen that the algorithm without weights and op-
timized intervals gave a better accuracy with the overall
deviation of 5.1 cents (RMS) than the one using weights,
which had an overall deviation of 6.12 cents (RMS). It can
also be seen that the deviation mostly happens in the treble
end. This is most likely because these tones have a high
degree of inharmonicity as well as a very short decay time,
which make it harder for the tuner to hear and count beats.

6. CONCLUSIONS

In this paper a semi-automatic tuning system aimed toward
tuning a grand piano with the help of a non-professional
tuner was presented. The system uses a stepper motor at-
tached to an aluminum frame to turn the tuning pins of the
piano. The stepper motor is controlled by an Arduino pro-

Keys RMS deviation (cents)
A0 to E3 3.2
Reference octave 1.3
F#3 to C8 6.3
All 5.1

Table 3. Average deviation between the professional tuner
and the CRI process without weights.



cessor, which is a part of a closed loop control system, to
automatically adjust the tension of the strings. The con-
trol system also includes a microphone and a computer,
which are used to measure the fundamental frequency and
the inharmonicity coefficient of the piano strings as well as
the magnitudes of partial frequencies from the tone of the
string. The frequency values are obtained using an inhar-
monicity coefficient estimation algorithm called MAT and
are used to calculate the difference between the current and
the target fundamental frequency.

The target fundamental frequency is determined with a
CRI tuning process using beating rates between the par-
tials of several intervals. The process specifies the order of
tuning for the strings to get the maximum number of inter-
vals for its estimation. The process can calculate the fun-
damental frequency for either a specified set of partials, or
for all partials, using weights. The process with and with-
out specified partials were compared to a tuning conducted
by a professional tuner. The process with specified partials
was based on the first matching partials of each interval.
With the optimal intervals, both processes gave great re-
sults with an RMS of 5.1 cents of deviation with specified
partials and 5.7 cents without them.

Acknowledgments

This work was supported in part by NordForsk’s Nordic
University Hub “NordicSMC”, project no. 86892. Jamin
Hu would like to thank Mr. Kari Kääriäinen, Master Model
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