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ABSTRACT

In this paper, implementation, instrument design and con-
trol issues surrounding a modular physical modelling syn-
thesis environment are described. The environment is con-
structed as a network of stiff strings and a resonant plate,
accompanied by user-defined connections and excitation
models. The bow, in particular, is a novel feature in this
setting. The system as a whole is simulated using finite
difference (FD) methods. The mathematical formulation
of these models is presented, alongside several new instru-
ment designs, together with a real-time implementation in
JUCE using FD methods. Control is through the Sensel
Morph.

1. INTRODUCTION

Physical models for sound synthesis have been researched
for several decades to mathematically simulate the sonic
behaviour of musical instruments and everyday sounds. Var-
ious techniques and methodologies have developed, rang-
ing from mass-spring models [1–3] to modal synthesis [4]
and waveguide based models [5]. The latter two techniques
may be viewed as numerical simulation techniques applied
to the systems of partial differential equations (PDEs). These
equations define the dynamics of a musical instrument, ei-
ther real or imagined.

Mainstream time-domain simulation techniques, such as
finite difference (FD) methods, were first applied to the
case of string vibration by Ruiz [6] and Hiller and Ruiz
[7, 8], and then later by other authors [9] including, most
notably Chaigne [10] and Chaigne and Askenfelt [11]. The
general use of finite-difference schemes (FDSs) in sound
synthesis is described in [12]. Modularized physical mod-
elling sound synthesis, whereby the user may construct a
virtual instrument using basic canonical components dates
back to the work of Cadoz and collaborators [1–3]. It
has been also used as a design principle in the context of
FD methods [13–15], where the canonical elements are
strings and plates, with a non-linear connection mecha-
nism. Though computational cost of such methods is high,
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standard computing power is now approaching a level suit-
able for real-time performance for simpler systems.

We are interested in bridging the gap between large-scale
modular physical modelling synthesis and sonic interac-
tion design [16], to be able to play with such simulations
in real-time. Specifically, we are interested in using the
expressivity of the Sensel Morph [17] to control our simu-
lations, using both percussive and bowing excitations. Our
ultimate goal is to create models that are both mathemat-
ically accurate and efficient. This goal is nowadays pos-
sible thanks to improvements in hardware and software
technologies for sound synthesis, yet it has rarely been
achieved. The ultimate goal is to provide a modular ef-
ficient synthesizer based on accurate simulations, where
real-time expressivity can also be achieved. This synthe-
sizer has already been informally evaluated by composers
and sound designers, who appreciated the current sonic
palette.

This paper is structured as follows: Section 2 describes
the physical models used in the implementation and Sec-
tion 3 shows a general description of the FD methods used
to digitally implement these models. Furthermore, Sec-
tion 4 elaborates on the real-time implementation, Sec-
tion 5 shows several different configurations of the physi-
cal models inspired by real musical instruments, Section 6
will present the results on CPU usage and evaluation and
discuss this and finally, in Section 7, some concluding re-
marks appear.

2. MODELS

In this section, the PDEs for the damped stiff string and
plate will be presented. The notation used will be the one
found in [12] where the subscript for state variable u de-
notes a single derivative with respect to time t or space x
respectively. Furthermore, to simplify the presented phys-
ical models, non-dimensionalization (or scaling) will be
used [12].

2.1 Stiff string

A basic model of the linear transverse motion of a string of
circular cross section may be described in terms of several
parameters: the total lengthL (in m), the material density ρ
(in kg·m−3), string radius r (in m), Young’s modulusE (in
Pa), tension T (in N), and two loss parameters σ0 and σ1.
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The PDE for a damped stiff string may be written as [12]

utt = γ2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx. (1)

In this representation, spatial scaling has been employed
using a length L, so the solution u = u(x, t) is defined for
t ≥ 0 and for dimensionless coordinate x ∈ [0, 1]. Further-
more, parameters γ =

√
T/ρπr2L2 and κ =

√
Er2/4ρL4

and have units s−1.
In this work, the string is assumed clamped at both ends,

so that
u = ux = 0 where x = {0, 1}. (2)

A model of a bowed string [12] may be incorporated into
(1) as

utt = . . .− δ(x− xB)FBφ(vrel), with (3a)
vrel = ut|(x=xB) − vB, (3b)

where FB = fB/Ms is the excitation function (in m/s2)
with externally-supplied bowing force fB = fB(t) (in N)
and total string massMs = ρπr2L (in kg). The relative ve-
locity vrel is defined as the difference between the velocity
of the string at bowing point xB and the externally-supplied
bowing velocity vB = vB(t) (in m/s) and φ is a dimension-
less friction characteristic, chosen here as [12]

φ(vrel) =
√

2avrele
−av2rel+1/2. (4)

Furthermore, δ(x − xB) is a spatial Dirac delta function
selecting the bowing location x = xB. The single bowing
point can be extended to a bowing area [12]. More detailed
models of string dynamics, again in a bowed string context,
have been proposed by Desvages [18].

Another, and more simple way to excite the string is by
extending Equation (1) to

utt = . . .+ EeFe (5)

using an externally-supplied distribution function Ee =
Ee(x) and excitation function Fe = Fe(t). In this case,
the excitation region is allowed to be of finite width.

2.2 Plate

Under linear conditions, a rectangular plate of dimensions
Lx and Ly may be parameterized in terms of density ρ (in
kg· m−3), thickness H (in m), Young’s modulus E (in Pa)
and a dimensionless Poisson’s ratio ν, as well as two loss
parameters σ0 and σ1.

In terms of dimensionless spatial coordinates x and y
scaled by

√
LxLy , the equation of motion of a damped

plate is a variant of the Kirchhoff model [19]

utt = −κ2∆∆u− 2σ0ut + 2σ1∆ut. (6)

Here, u(x, y, t) is the transverse displacement of the plate
as a function of dimensionless coordinates x ∈ [0,

√
a ],

y ∈ [0, 1/
√
a ], where a = Lx/Ly is the plate aspect ra-

tio, as well as time t. Furthermore, ∆ represents the 2D
Laplacian [12]:

∆ =
∂2

∂x2
+

∂2

∂y2
. (7)

The stiffness parameter κ, with dimensions of s−1, is de-
fined by κ =

√
D/ρHL2

xL
2
y whereD = EH3/12

(
1− ν2

)
.

As in the case of the stiff string, we chose to use clamped
boundary conditions:

u = n · ∇u = 0 (8)

over any plate edge with outward normal direction n and
where∇u is the gradient of u.

2.3 Connections

Adding connections between different physical models, fur-
ther referred to as elements, adds another term to Equation
(3a), (5) or (6). Assuming that element α is a stiff string
and β is a plate, the following terms are added to the afore-
mentioned equations:

utt = ...+ Ec,αFα, (9a)
utt = ...+ Ec,βFβ , (9b)

with force-functions Fα = Fα(t) and Fβ = Fβ(t) (in
m/s2) and distribution functions Ec,α and Ec,β which have
chosen to be highly localised in our application and reduce
to δ(x − xc,α) and δ(x − xc,β , y − yc,β) respectively, but
can be extended to be connection areas [13]. We use the
implementation as presented in [13] where the connection
between two elements is a non-linear spring. The forces it
imposes on the elements it connects are defined as

Fα = −ω2
0η − ω4

1η
3 − 2σ×η̇, (10a)

Fβ = −MFα, (10b)

where ω0 and ω1 are the linear (in s−1) and non-linear (in
(m·s)−1/2) frequencies of oscillation respectively, σ× is a
damping factor (in s−1),M is the mass ratio between the
two elements and η is the relative displacement between
the connected elements at the point of connection (in m).
Lastly, the dot above η denotes a derivative with respect to
time.

3. FINITE-DIFFERENCE SCHEMES

To be able to digitally implement the continuous equations
shown in the previous section, they need to be approxi-
mated. In this section, a high-level review of a finite differ-
ence approximation to a connected system of strings and
plates is presented. For more technical details, see [13].

In the case of the stiff string, state variable u(x, t) can be
discretised at times t = nk, where n ∈ N and k = 1/fs is
the time step (at sample-rate fs) and locations x = lh, with
l ∈ [0, . . . , N ] where the total number of points is N + 1
and grid spacing h. We can now write the discretised state
variable as unl , representing an approximation to u(x, t).

In the case of the plate, u(x, y, t) is discretised to un(l,m)

using x = lh where l ∈ [0, . . . , Nx] with Nx + 1 being the
total horizontal number of points and y = mh where m ∈
[0, . . . , Ny] with Ny + 1 being the total vertical number of
points.

In a general sense, when discretising PDEs as presented
in Equations (1) and (6), we will need to solve for un+1,



i.e., u at the next time step, where u is a vector of sizeN−
1 containing values of ul ∀l for a string and (Nx−1)(Ny−
1) containing values of u(l,m) ∀(l,m) for a plate. Note that
the vector sizes are smaller than the total number of grid
points as we do not include the values at the boundaries
(which are always 0). For a PDE expressed as a function
of utt, its FDS will be of the form

un+1 = 2un − un−1 +KFn, (11)

where

K =
k2

1 + σ0k
, (12)

and Fn is a combination of the discretised PDE (exclud-
ing terms containing un+1) together with connection and
excitation terms.

3.1 Stiff String

In the case of the stiff string, Fn in Equation (11) is a com-
bination of the discretised PDE (1) fnα , connection term
(9a) and bowing (3a)

Fn = fnα + Ec,αF
n
α − J(xnB)FnB φ(vrel), (13a)

or excitation (5) term

Fn = fnα + Ec,αF
n
α + EeF

n
e , (13b)

where Ec,α contains the discretised distribution function
for the connection (1/h at connection index lc,α, rest 0’s
[12]), Ee contains the discretised distribution function for
the excitation (which will be presented in Equation (25) in
the next section) and J(xnB) is a spreading operator con-
taining the discretised bowing distribution (1/h at time-
varying bowing position xB). If xB is between grid points,
cubic interpolation is used to spread the bow-force over
neighbouring grid points [12]. All vectors are columns of
size N − 1.

It can be useful to talk about the region of operation of a
FDS in terms of a ‘stencil’. A stencil describes the number
of grid points needed to calculate a single point at the next
time step. The stiff string FDS has a stencil of 5 grid points.
In other words, two grid points at either side of l – and l
itself – are necessary to calculate un+1

l . See Figure 1 for a
visualisation of this.

In order for the scheme to be stable, the grid spacing
needs to abide the following condition [12]

h ≥

√
γ2k2 + 4σ1k +

√
(γ2k2 + 4σ1k)2 + 16κ2k2

2
.

(14)
The closer h is to this limit, the higher the quality of the
implementation. The number of points N can then be cal-
culated using

N = floor
(

1

h

)
. (15)

3.2 Plate

In the case of the plate, u is a column vector of concate-
nated vertical ‘strips’ of the plate state as in [13] of size

space

ti
m

e

space

ti
m

e

Figure 1. Stencil for a stiff string FDS with grid spacing h
and time step k. The point l at the next time step (yellow)
is calculated using 5 points at the current time step (blue)
and 3 at the previous time step (dark blue).

(Nx − 1)(Ny − 1) and Fn in Equation (11) is a combi-
nation of the discretised PDE (6) fnβ and connection term
(9b)

Fn = fnβ + Ec,βF
n
β . (16)

Here, Ec,β contains the discretised distribution function for
the connection (1/h2 at connection index (lc,β , mc,β), rest
0’s [13]) and is a column vector of size (Nx− 1)(Ny − 1).
For the plate, the stencil will consist of 13 grid points as
can be seen in Figure 2.

Figure 2. Stencil for a plate FDS. The point (l,m) at the
next time step (yellow) is calculated using 13 points at the
current time step (blue) and 5 at the previous time step
(dark blue).

The grid spacing needs to abide the following condition
[13]

h ≥ 2

√
k

(
σ2
1 +

√
κ2 + σ2

1

)
, (17)

(again, the closer h is to this limit the better) from which



Nx and Ny can be derived using

Nx = floor

(√
a

h

)
and Ny = floor

(
1

h
√
a

)
. (18)

3.3 Connections

In the following, we discretise the equations in (10) as
shown in [13]. However, as these equations are not ex-
pressed as a function of utt, their FDS counterpart will be
different. Moreover, instead of solving for un+1, we need
to solve for ηn+1, i.e., the relative displacement at the next
time step, which will be in the form of

ηn+1 = pnFnα + rnηn−1, (19)

where pn = p(ηn) and rn = r(ηn) are functions of the
relative displacement η if ω1 6= 0 and constants if ω1 = 0.
Again, assuming that element α is a stiff string and β is a
plate, η can be calculated using

ηn = hαu
n
α,lc,α − h

2
βu

n
β,(lc,β ,mc,β)

. (20)

In other words, this is the difference between the state of
element α at lc,α and the state of element β at (lc,β ,mc,β)
scaled by their respective (for plates, squared) grid spac-
ings hα and hβ . The next step is to obtain Fnα , which can
be used to easily calculate Fnβ . We first obtain values for
un+1 by solving (11) using (13a), (13b) or (16) (without
the connection term!) for a string or plate respectively. As,
at this point, no connection forces have been added yet,
this state will be referred to as an intermediate state uI.
This intermediate state can be used to obtain ηn+1 using
(20)

ηn+1 = hα(uI
α,lc,α+KαF

n
α )−

[
h2β(uI

β,(lc,β ,mc,β)
+KβF

n
β )
]
,

(21)
whereKα andKβ are as described in (12) using the damp-
ing coefficient σ0 of their respective element. This can then
be set equal to (19). Using Equation (10b), solving for Fα
yields

Fnα =
rnηn−1 − (hαu

I
α,lc,α

− h2βuI
β,(lc,β ,mc,β)

)

hαKα +Mh2βKβ − pn
. (22)

4. IMPLEMENTATION

In this section, we elaborate more on the chosen values for
the parameters described in the previous two sections and
present the system architecture of the real-time application.
The values for most parameters have been arbitrarily cho-
sen and can – as long as they satisfy the conditions in Equa-
tions (14) and (17) – be changed. We used C++ along with
the JUCE framework [20] for implementing the physical
models and connections in real-time. The main hardware
used was a MacBook Pro with a 2.2 GHz Intel Core i7
processor.

4.1 Stiff String

As many string properties stay constant, we chose to set
the following parameters directly, rather than calculating

them from their physical properties: κ = 2, σ0 = 1, σ1 =
0.005. An interesting parameter to make dynamic is the
fundamental frequency f0 (in s−1) of the string. According
to [12], the fundamental frequency can be approximately
calculated using

f0 ≈
γ

2
. (23)

However, as the grid spacing h is dependent on the wave
speed γ according to the condition found in (14), we must
put a lower limit on the number of points N if we plan to
dynamically increase γ.

Another way to change frequency is to add damping to
the model at specific points acting as a (simplified) fretting
finger. The advantage of this is that the condition (14) will
never be violated. On top of this, a tapping sound will be
introduced when fretting the string making it more realistic
than changing the wave speed. If the string is fretted at
single location xf ∈ [0, 1] and lf = floor(xf/h) we use

unl =


0, l = lf − 1 ∨ l = lf

(1− αεf )unl , l = lf + 1

unl , otherwise
(24)

where αf = xf/h − lf describes the fractional location of
xf between two grid points. Note that the grid point at
the finger location and the grid point before are set to 0 to
(recalling the stencil) prevent the states at either side of the
finger to influence each other. The disadvantage of using
this technique over regular linear interpolation, is that the
effect of damping between grid points does not linearly
scale to pitch. We thus added ε = 7 as a heuristic value to
more properly map finger position to pitch.

In some cases, N is fixed to a certain value (as opposed
to calculating it from Equations (14) and (15)) for multiple
strings of different pitches. Even though some bandwidth
will be lost (in the higher frequency range), this will allow
the strings to be perfectly tuned to each other.

4.1.1 Bowed String

Parameters for the bowed strings abide the following con-
ditions: |vB| ≤ 1 m/s and 0 ≤ FB ≤ 100 N. It was chosen
to discretise Equation (3b) implicitly making it necessary
to use an iterative root-finding method such as Newton-
Raphson [21].

4.1.2 Excited string

If simply excited, we set the distribution function to a raised
cosine with width we (in grid points)

Ee(l) =

{
1−cos( 2π(l−(le−we/2))

we )
2 , le − we

2 < l < le + we
2

0, otherwise
(25)

scaled by the excitation function over time with excitation
duration de (in samples)

Fe(n) =

{
1−cos(π(n−ne)

de )
2 , ne ≤ n < ne + de

0, otherwise
(26)

A visualisation of this can be found in Figure 3.



Figure 3. A visualisation of the excitation used in our im-
plementation presented in Equation (5). The location of
excitation xe is shown in green, excitation width we in red
and excitation duration de in blue (also see Equations (25)
and (26)).

4.2 Plate

For the plate, the damping coefficients have been decided
to be σ0 = 0.1 and σ1 = 0.005 and the aspect ratio is set to
a = 2. The plate stiffness κ has been left as a user parame-
ter to be changed dynamically and will be between the fol-
lowing bounds: 0.1 ≤ κ ≤ 50 s−1. In Equation (17), the
grid spacing is calculated using the maximum value of κ to
prevent stability issues. Using a sample rate of 44,100 Hz
results in a plate with dimensions Nx = 20 and Ny = 10
(in grid points).

4.3 Connections

Increasing ω1 & 100, 000 (m·s)−1/2 while keeping 0 <
ω0 . 100 s−1 will cause audible non-linear behaviour,
such as pitch-glides and rattling sounds. These effects will
be more dominant when the plate stiffness is higher. In our
implementation we set ω0 = 100 s−1 and ω1 = 100, 000
(m·s)−1/2. The spring-damping σ× = 1 s−1 is kept to a
minimum (0 ≤ σ× ≤ 10 s−1).

4.4 System Architecture

The system architecture can be seen in Figure 4. The top
box denotes the Sensel Morph (described in more detail
in the next section) controlling the application, and the
white boxes show the different classes or components of
the application. The black arrows indicate instructions that
one class can give to another and the hollow arrows show
data flows between classes. All arrows are accompanied
by a coloured box indicating which thread the instruction
/ dataflow is associated with and at what rate this thread
runs.

The lowest priority thread, the graphics-thread, is shown
by green boxes and runs at 15 Hz. This draws the states of
the strings, connections and the plate on the screen.

Checking and retrieving the Sensel state happens at a rate
of 150 Hz and is denoted by blue boxes. The parame-
ters that the user controls by means of the Sensel, such
as bowing position, force and velocity, will be updated in
the models at this rate as well.

The highest priority thread is the audio-thread and runs at
commonly-used sample rate 44,100 Hz. The main appli-
cation gives an ‘update’ (u) instruction to the instrument,

u
I
xc
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 u & o  
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set 
parameters 

Conn

Fα Fβ

Figure 4. System architecture flowchart. See Section 4.4
for a thorough explanation.

which in turn updates the FDSs in its strings and plate. Af-
ter the FDS update is done, the intermediate state at the
connection points uI

xc
(where xc = lc,α for the string or

xc = (lc,β ,mc,β) for the plate) are sent to the connection
(Conn) class which calculates the force-functions Fα and
Fβ . These values are then sent back to the string and plate
classes and added to their respective states after which their
outputs (o) (at arbitrary points) are sent back to the main
application. See Algorithm 1 for this ‘order of calculation’.

5. INSTRUMENTS AND USER INTERACTION

In this section, the Sensel Morph (or simply Sensel) and
user interface will be described in more detail. Further-
more, several configurations of strings, plates and connec-
tions that are inspired by real-life instruments will be pre-
sented. A demonstration of one of the instruments can be
found in [22].

5.1 Sensel Morph

The Sensel Morph is a highly accurate touch controller that
senses position and force of objects [17] (see Figure 5).
We use the Sensel as an expressive interface for interacting
with the instrument configurations. Right above the touch-
sensitive area, the Sensel contains an array of 24 LEDs that
can be controlled from the application.

5.2 User interface

Strings are shown as coloured paths (see Figure 6 for a de-
scriptive visualisation). The state un of the string is visu-
alised using the vertical displacement of the paths. Bowed
strings are shown in cyan on the top left. The bow is shown



while application runs do
for all elements do

calculate intermediate state uI using previous
state values (as in Equation (11))
uI

s = 2un − un−1 +KF
end
if element is excited/bowed then

calculate excitation term E and add to interme-
diate state of the element
uI

s+e = uI
s + E

end
for all connections do

calculate connection forces and add connec-
tion term C to elements to obtain the state at
the next time step
un+1

s+e+c = uI
s+e + C

end
update state vectors
un−1 = un

un = un+1
s+e+c

increment time step
n++

end

Algorithm 1: Pseudocode showing the correct order of
calculation. The subscripts for state vector u shows what
it consists of (‘s’ for previous state, ‘e’ for excitation and
‘c’ for connection).

as a yellow rectangle and moves on interaction. The fret-
ting position is shown as a yellow circle. Plucked strings
are shown in purple in the top right, underneath which the
sympathetic strings are shown in light green. The plate is
shown in the bottom using a grid of rectangles (clamped
grid points are not shown). Its state is visualised using a
grey-scale. Furthermore, connections are shown using or-
ange circles/squares for the points of connection and dot-
ted lines between these points. Lastly, all parameters that
are controlled by the mouse such as output-level and plate-
stiffness are located in a column on the right side of the
application.

5.3 Instruments

We subdivide string-elements into three types: bowed, plucked
and sympathetic strings. All strings will be connected to
one plate acting as an instrument body of which the user
can control the plate-stiffness. Furthermore, the user can
change the output-level of each element type. Apart from
these parameters, which are controlled by the mouse, the
instruments are fully controlled by two Sensels. The in-
struments we have chosen as our inspiration are the sitar,
the hammered dulcimer and the hurdy gurdy.

5.3.1 Bowed Sitar

The sitar is originally an Indian string instrument that has
both fretted strings and sympathetic strings. Instead of
plucking the fretted strings, we extended the model to bow
them. Our implementation consists of 2 bowed strings

Figure 5. Player using the Sensel Morphs to interact with
one of the instruments.

(tuned to A3 and E4), 13 sympathetic strings (tuned ac-
cording to [23]) and 5 plucked strings (tuned A3-E4 fol-
lowing an A-major scale) as it is also possible to strum
the sympathetic strings. See Figure 6 for a visual of the
implementation. One Sensel is vertically subdivided into
two sections; one for each bowed string. The first finger
registered by the Sensel is mapped to a bow and the sec-
ond is mapped to a fretting finger controlling pitch. The
horizontal position of both fingers is visualised using the
Sensel’s LED array. The frets are not implemented as such
(the pitch is continuous), but they are visualised for refer-
ence. The horizontal position of the first finger is mapped
to the bowing position on the string, the vertical velocity
to the bow velocity vB and the finger force is linked to the
excitation function FB (both in Equation (3a)). The other
Sensel is subdivided into 5 sections mapped to the plucked
strings. These sections are visualised by the LED array for
reference.

The mass ratio for the bowed/plucked string to plate con-
nections has been set toM = 2 and ratio for the sympa-
thetic string to plate connections has been set toM = 0.5
to increase the effect that the playable strings have on the
sympathetic strings.

Figure 6. The bowed sitar application. The descriptions of
the different elements and other objects are shown in the
image, but will (naturally) not be visible in the application.



5.3.2 Hammered Dulcimer

The hammered dulcimer is an instrument that can be seen
as an ‘open piano’ where the musician has the hammers
in their hand. Just like the piano, the strings are grouped
in pairs or triplets that are played simultaneously. In our
implementation, we have 20 pairs of plucked strings. Even
though most hammered dulcimers have more strings, we
decided that this configuration has the highest number of
strings while maintaining playability. One of each pair is
connected to the plate which slightly detunes it, creating
a desired ‘chorusing’ effect. See Figure 7 for a visual of
the implementation. In order for the excitation to more re-
semble a strike of a hammer than a pluck, the contents of
the cosine in (26) will be multiplied by 2 for the excitation
to have a less abrupt ending, something desired for a ham-
mered interaction. Moreover, the excitation-length can be
changed to simulate short and long hammer-times.

The Sensels are placed vertically next to each other (see
Figure 5). The pair with the lowest frequency will then be
located in the bottom right and the highest in the top left,
as in the real instrument. As with the plucked strings of the
bowed sitar, the LED array is used to visualise the way that
the Sensel is subdivided, which is especially useful here as
one Sensel controls 10 string-pairs.

The mass ratio is set relatively high (M = 100) to am-
plify the non-linear interaction between the strings and the
detuning of the strings connected to the plate.

Figure 7. The hammered dulcimer application.

5.3.3 Hurdy Gurdy

The hurdy gurdy is an instrument that consists of bowed
and sympathetic strings. The bowing happens through a
rosined wheel attached to a crank and bows these strings
as the crank is turned. It is possible to change the pitch of
a few bowed strings - the melody strings - using buttons
that press tangent pins on the strings at different positions.
The other strings, referred to as drone strings, are mostly
tuned lower than the melody strings and provide the bass
frequencies of the instrument. The musician can place the
bowed strings on rests that keep the wheel from interacting
with it.

Our implementation consists of 5 bowed strings subdi-
vided into 2 drone strings tuned to A2, E3 and 3 melody
strings tuned to A3, E4 and A4 and 13 sympathetic strings
tuned the same way as the sympathetic strings in bowed

sitar. Furthermore, the mass ratios have been set the same
as in the bowed sitar application. See Figure 8 for a visual
of the implementation.

The Sensel is vertically subdivided into 5 rows that con-
trol whether the strings are placed on the wheel. The bow-
ing velocity is mapped to the average pressure of the fin-
gers. The fundamental frequency (in the model γ/2) of the
melody-strings is changed by a Sensel with a piano-overlay
acting as a midi controller. A demonstration of this instru-
ment can be found in [22]. It is interesting to note here that
the sympathetic strings that are in tune with the harmonics
of the bowed strings resonate most, which is expected to
happen in the real world as well.

Figure 8. The hurdy gurdy application.

6. RESULTS AND DISCUSSION

Table 1 shows the CPU usage (on the same MacBook Pro
2.2 GHz i7 as described before) for the three instruments
presented in the previous section. As the Sensel thread
contributes a negligible amount to the CPU usage, this is
not shown in the table.

Application No Sound No Graphics Total
Bowed Sitar 32 63 85

Dulcimer 30 66 85
Hurdy Gurdy 28 58 78

Table 1. CPU usage (in %) for the instruments found in
Section 5. Values show usage of one (virtual) thread and
have been taken as an average (with a margin of ~5%) over
a short period of time. The two middle columns show us-
age when the sound or graphics thread has been turned off.

As can be seen from the table, all instruments use about
the same amount of CPU and none of them have audi-
ble dropouts (CPU < 100%). It can be observed that the
graphics use about 20% of the CPU, indicating that there is
still much room to increase the complexity of the instrument-
configurations before dropouts will occur. On the other
hand, should the instruments be used in parallel with other
audio applications or plug-ins, the CPU usage has to be
greatly reduced. The first step towards this would be to
vectorise the FDSs using AVX instructions.

While our instruments have been not formally evaluated
yet, we have performed some qualitative evaluations with



sound and music computing experts. The goals of the eval-
uations were to explore the playability of the instrument,
sonic quality and intuitiveness of control. These evalua-
tions showed that especially the bowing interaction feels
intuitive and creates a natural sound. The overall sound
of the instruments was generally judged to be interesting,
but not “sounding like a real-life instrument”. This makes
sense, as we did not seek to perfectly model each instru-
ment, but rather used them as an inspiration for the config-
urations of the physical models. The next step for sound
quality would be to replace the thin plate with a more real-
istic element, such as a wooden instrument body.

7. CONCLUSION

In this paper, a real-time modular physical modelling syn-
thesis environment structured as a network of connected
strings and plates has been presented. Several instruments
have been created in the context of this environment which
can be played by a pair of Sensel Morphs allowing for
highly expressive control of these instruments. Informal
evaluations with professional musicians have confirmed that
the interaction is found natural and the output sound inter-
esting. Further steps to improve this project are to optimise
the algorithm and to replace the plate with a more realistic
instrument body.
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