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ABSTRACT

We present a method for tempo estimation from audio re-
cordings based on signal processing and peak tracking, and
not depending on training on ground-truth data. First an
accentuation curve, emphasising the temporal location and
accentuation of notes, is based on a detection of bursts of
energy localised in time and frequency. This enables to
detect notes in dense polyphonic texture, while ignoring
spectral fluctuation produced by vibrato and tremolo. Pe-
riodicities in the accentuation curve are detected using an
improved version of autocorrelation function. Hierarchical
metrical structures, composed of a large set of periodicities
in pairwise harmonic relationships, are tracked over time.
In this way, the metrical structure can be tracked even if
the rhythmical emphasis switches from one metrical level
to another.

This approach, compared to all the other participants to
the MIREX Audio Tempo Extraction from 2006 to 2018,
is the third best one among those that can track tempo
variations. While the two best methods are based on ma-
chine learning, our method suggests a way to track tempo
founded on signal processing and heuristics-based peak
tracking. Besides, the approach offers for the first time
a detailed representation of the dynamic evolution of the
metrical structure. The method is integrated into MIRtool-
box, a Matlab toolbox freely available.

1. INTRODUCTION

Detecting tempo in music and tracking the evolution of
tempo over time is a topic of research in MIR that has
been extensively studied these last decades. Recently ap-
proaches based on deep learning have contributed to an
important progress in the state of the art [1, 2]. In this pa-
per, we present a method that relates to a more classical
approach based on signal processing and heuristics-based
data extraction. We previously briefly presented the princi-
ples of the approach [3]. This paper offers a more detailed
description of the method.
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One particularity of the proposed approach is that it en-
ables to track not only one, two or three, but a larger num-
ber of metrical levels. This enables to get a detailed de-
scription of the dynamic evolution of the metrical struc-
ture: not only how the whole structure speeds up or slows
down with respect to global tempo, but also how individual
metrical levels might be emphasised at particular moments
in the music. In order to give an indication of metrical
activity that would not reduce solely on tempo but takes
into consideration the activity on the various metrical lev-
els, we introduce a new measure, called dynamic metrical
centroid.

2. RELATED WORK

2.1 Accentuation curve

The estimation of tempo starts from a temporal description
of the location and strength of events appearing in the piece
of music. This first step consists in inferring an “onset de-
tection curve”, also called accentuation curve [4]. Musical
events are indicated by peaks; the height of each peak is
related to the importance of the related event. Envelope-
based approach globally estimates the energy for each suc-
cessive temporal frame without considering its spectral de-
composition; spectral flux methods estimate the difference
of energy over successive frames on individual frequen-
cies individually, and further summed together [5, 6]. The
envelope approach would work in the case of sequences
made of notes sufficiently isolated or accentuated with re-
spect to the background, corresponding to short bursts of
energy separated by low-energy transitions, as in simple
percussive sequences. Indeed, in such case, the resulting
envelope curve would show each percussive event with a
peak. On the contrary, for dense musical sequences featur-
ing overlapped notes, such as complex orchestral sounds,
the spectral flux method better distinguishes the attack of
individual notes, provided that the different notes occupy
distinct frequency bands. Minor energy fluctuation along
particular frequencies may blur the resulting accentuation
curve in the point of making it impossible to detect the ac-
tual note attacks. The use of thresholding can filter out
energy fluctuation on constant frequency bands (such as
tremolo) and select only significantly high energy bursts re-
lated to note attacks. Still, energy fluctuating in frequency,
such as vibrato, may still add noise to the resulting accen-
tuation curve.
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Figure 1. Comparison between the method in [7] (left) and
our proposed method (right), for the comparison of a given
spectrogram amplitude p(t, f) at time t and frequency f
with amplitudes from previous (and next) frames.

In order to detect significant energy bursts on highly lo-
calised frequency ranges but still filter out the artifacts due
to the possible frequency fluctuation along time of such
localised events, it is necessary to add some tracking capa-
bility. The approach presented by [7] can be considered
as an answer to this problem. It searches for rapid in-
crease of amplitude on particular frequency components,
and evaluates for each detected onset its “degree of onset”,
defined as the rapidity of increase in amplitude. To esti-
mate this increase of amplitude at a given time t for a par-
ticular frequency f , the amplitude p(t, f) is compared not
only to the corresponding amplitude at the previous frame
p(t−1, f), but also to the amplitude at the higher and lower
frequency bins p(t− 1, f − 1) and p(t− 1, f + 1) as well
as p(t − 2, f). These previous points form the contextual
background. The current amplitude p(t, f) is compared
with the maximum of the amplitude at those four previous
points, as shown in Figure 1. Let pp(t, f) be this maxi-
mum. Besides, the corresponding amplitudes at frame t+1
are also compared with pp(t, f).

For a given instant t and frequency f , the degree of onset
is given by

do(t, f) = p(t, f)− pp(t, f) (1)

The degrees of onset are summed over the frequency com-
ponents, leading to the onset curve.

2.2 Periodicity analysis

A pulsation corresponds to a periodicity in the succession
of peaks in the accentuation curve. Classical signal-pro-
cessing methods estimate periodicity using methods such
as autocorrelation, the YIN method, bank of comb-filter
resonators with a constant half-time [8] or phase-locking
resonators. 1 Basically, a range of possible periodicity fre-
quencies is considered, and for each frequency, it is es-
timated whether there exists any periodicity at that fre-
quency. In the following, we will call periodicity function
the representation, such as autocorrelation function, show-
ing the periodicity score related to each possible period (or
alternatively each possible frequency).

2.3 Metrical structure

One common approach to extract the tempo from the peri-
odicity function is to select the highest peak, within a range

1 Cf. [4] for a detailed literature review.

of beat periodicities considered as most adequate, typically
between 40 and 200 BPM, with a weighted emphasis on
best perceived periodicity range. This approach fails when
tracking the temporal evolution of tempo over time, espe-
cially for pieces of music where different metrical levels
are emphasised throughout the temporal development. For
instance, if at a given moment of the piece of music, there
is an accentuated quarter note pulsation followed by an ac-
centuated eighth note pulsation, the tempo tracking will
switch from one BPM value to another one twice faster,
although the actual tempo might remain constant. And as
we may imagine, such shift from metrical level to another
is very frequent in music.

In [4], three particular metrical levels are considered as
core elements of the metrical structure: The tactus is con-
sidered as the most prominent level, also referred as the
foot tapping rate or the beat. The tempo is often identified
to the tactus level. The tatum—for “temporal atom”—is
considered as the fastest subdivision of the metrical hier-
archy, such that all other metrical levels (in particular tac-
tus and bar) are multiples of that tatum. The bar-level or
other metrical levels related to change of chords, melodic
or rhythmic patterns, etc. The tracking of tempo along time
result from a tracking of these three metrical levels using a
Hidden Markov Model (HMM).

The tatum is considered (and modeled) as the minimal
subdivision such that each other metrical level is a multiple
of that elementary level, but this canonic situation does not
describe all metrical cases: for instance, binary and ternary
subdivisions often coexist, as we will see in section 5.

2.4 Deep-learning approaches

Recent deep-learning approches start from the computa-
tion of a spectrogram, eventually followed by a filtering
that emphasises the contrast between successive frames,
along each different frequency [1]. In [1], the successive
frames of the spectrogram are then fed into a Bidirectional
Long Short-Term Memory (BLSTM) Recurrent Neural Net-
work (RNN). This network can be understood as perform-
ing both the detection of events based on local contrast
asnd the detection of periodicity in the succession of events,
along multiple metrical levels. This is followed by a Dy-
namic Bayesian Network that plays a similar role as the
HMM, tracking the pulsation along two metrical levels (cor-
responding to beats and downbeats). In [2], the whole pro-
cess consists in feeding the spectrogram to a convolutional
neural network (CNN).

3. PROPOSED METHOD

The proposed method introduces improvements in the suc-
cessive steps forming the traditional procedure for metrical
analysis that were presented in sections 2.1, 2.2 and 2.3.
Those improvements are as follows. A modification of the
localised method for accentuation curve estimation enables
to better emphasise note onsets in complex polyphony with
vibrato and tremolo (section 3.1). Periodicity detection
is performed using a modified version of autocorrelation
function (section 3.2).



Besides, we introduce a new methodology for tracking
the metrical structure along a large range of periodicity
layers in parallel. The tracking of the metrical structure
is carried out in two steps:

1. a tracking of the metrical grid featuring a large range
of possible periodicities (section 3.3). Instead of
considering a fix and small number of pre-defined
metrical levels, we propose to track a larger range of
periodicity layers in parallel.

2. a selection of core metrical levels, leading to a metri-
cal structure, which enables the estimation of metre
and tempo (section 3.4).

3.1 Accentuation curve

Our method for the inference of the accentuation curve fol-
lows the same general principle of the model introduced
in [7], detecting and tracking the apparition of partials lo-
cally in the spectrogram, as explained in section 2.1. In
our case, the spectrogram is computed for the frequency
range below 5000 Hz and the energy is represented in the
logarithmic scale in decibel.

We use different parameters for the specification of the
temporal scope and the frequency width of the contextual
background. In [7], the frequency width is of 43 Hz and
the temporal depth of 23 ms. After testing on a range of
musical styles, we chose a frequency width around 20 Hz
and a temporal depth of .8 second (cf. Figure 1). By en-
larging the temporal horizon of the contextual background,
this enables to filter out tremolo effects and to focus on
more prominent increase of energy.

In the proposed model, the second condition for onset
detection specified in [7] —namely, that the energy on the
frame succeeding the current one should be higher than
the contextual background—is withdrawn, for the sake of
simplicity. That constraint seems aimed at filtering out
bursts of energy that are just one frame long, but bursts
two frames long would not be filtered out. And we might
hypothesise that short bursts of energy might still be per-
ceived as events.

Finally, the degree of onset is different from the one pro-
posed in [7]. Instead of conditioning the degree of onset to
the increase of energy with respect to the contextual back-
ground, we propose instead to condition it to the absolute
level of energy:

do(t, f) = p(t, f) (2)

This is because a burst of energy of a given level p(t, f)
might be perceived as strong, and could contribute there-
fore to the detection of a note onset, even if there was a
relatively loud sound in the frequency and temporal vicin-
ity. This modification globally improved the results in our
tests.

In our proposed method, the accentuation curve shows
more note onsets than in [7]. This leads to a more detailed
analysis of periodicity and a richer metrical analysis. This
allows sometimes the discovery of the underlying metrical
structure that was hidden under a complex surface and was
not detected using [7].

3.2 Periodicity analysis

Tempo is estimated by computing an autocorrelogram with
a frame length of 5 seconds and hop factor 5%, for a range
of time lags between 60 ms and 2.5 s, corresponding to a
tempo range between 24 and 1000 BPM. The autocorrela-
tion curve is normalized so that the autocorrelation at zero
lag is identically 1.

A peak picking is applied to each frame of the autocorrel-
ogram separately. The beginning and the end of the auto-
correlation curves are not taken into consideration for peak
picking as they do not correspond to actual local maxima.
A given local maximum will be considered as a peak if its
distance with the previous and successive local minima (if
any) is higher than 5% of the total amplitude (i.e., the dis-
tance between the global maximum and minimum) of the
autocorrelation function.

One important problem with autocorrelation functions is
that a lag can be selected as prominent because it is found
often in the signal although the lag is not repeated succes-
sively. We propose a simple solution based on the follow-
ing property: For a given lag to be repeated at least twice,
the periodicity score associated with twice the lag should
have a high probability score as well. This heuristics can
be implemented as a single post-processing operation ap-
plied to the autocorrelation function, removing all period-
icity candidate for which there is no periodicity candidate
at around twice its lag.

3.3 Tracking the metrical grid

3.3.1 Principles

In the proposed approach, we track a large range of possi-
ble metrical levels. This is done in two successive steps:

• the construction of a detailed set of periodicities in-
herent to the metrical structure, leading to what we
propose to call a metrical grid, where individual pe-
riodicities are called layers,

• the selection among those metrical layers of core
metrical levels, whose periods are in multiplicity ra-
tios. All other layers of the metrical grid are simple
multiples or submultiples of those metrical levels.
One metrical level is selected as the most prevalent,
for the determination of tempo.

For each metrical layer i, its tempo Ti (meaning the tempo
related to the metrical grid by tapping on that particular
metrical layer) and period τi are directly related to the tempo
T1 and period τ1 of the reference layer i = 1:

Ti =
T1
i
, τi = τ1i (3)

For instance, the tempo at metrical layer 2 is twice slower
than the one at metrical layer 1. Although tempo can change
over time, the tempo related to the different metrical peri-
odicities conserve their multiplicity ratio, so that equation
3 remains valid in theory.

The tracking of the metrical grid over time requires a
management of uncertainty and noisy data. Periodicity



lags measured in the autocorrelogram do not exactly com-
ply with the theoretical lags given by equation 3. For that
reason, each metrical layer i is described by both:

• theoretically, the temporal series of periods τi(n) re-
lated to metrical layer i knowing the global tempo
given by τ1(n).

• practically, the temporal series of lags ti(n) effec-
tively measured at location of peaks in the autocor-
relation function for each successive frame n.

In the graphical representation of the metrical structure,
both actual and theoretical periods are shown: the tempo-
ral succession of the theoretical values at a given metrical
layer is shown with a line of dots, whereas the actual pe-
riods are indicated with crosses that are connected to the
theoretical dot with a vertical line. For instance in Figure
2, we see a superposition of metrical layers, each with a
label indicated on the left side, starting from layer 0.25 up
until layer 4, with also a layer 4.25 appearing around 30
second after the start of the excerpt.

3.3.2 Procedure

The theoretical periods are inferred based on the measured
periods, as we will see in equation 13.

The integration of peak into the metrical grids is done
in three steps, related to the extension of metrical layers
already registered, the creation of new metrical layers and
finally the initiation of new metrical grids.

For each successive time frame n, peaks in the period-
icity function (as specified in section 3.2) are considered
in decreasing order of periodicity score. This is motivated
by the observation that strongest periodicities, correspond-
ing generally to important metrical levels, tend to show a
more stable dynamic evolution and are hence more reliable
guides for the tracking of the metrical structure. Weaker
autocorrelation peaks, on the contrary, may sometimes re-
sult from a mixture of underlying local periodicities, hence
might tend to behave more erratically. For each frame, the
strongest peaks first considered enable to get a first estima-
tion of the tempo T1(n) at that frame, which will be used
as a reference when integrating the weaker periodicities.

Each peak, related to a period (or lag) t is tentatively
mapped to one existing metrical layer i. We consider two
ways to estimate the distance between current peak t and
a given metrical layer i: either by comparing current peak
lag t with the actual lag of the peak associated with this
metrical layer i at previous frame n− 1:

d1(t, i) = |t− ti(n− 1)| (4)

or by comparing current peak lag t with the theoretical lag
at that metrical layer i knowing the global tempo:

d2(t, i) = |t− τi(n)| (5)

For low lag values, small difference in time domain can
still lead to importance difference in tempo domain. For
that reason, an additional distance is considered, based on
tempo ratio:

d3(t, i) =

∣∣∣∣log2( t

τi(n)

)∣∣∣∣ (6)

The distance between current peak t and a given metrical
layer i can be then considered as the minimum of the two
distances on the time domain:

d(t, i) = min(d1(t, i), d2(t, i)) (7)

and the closest metrical layer i∗ can be chosen as the one
with minimal distance:

i∗ = argmin
i

d(t, i) (8)

If this metrical period has already been assigned to a stronger
peak in current frame n, this weaker peak t is discarded for
any further analysis. In other cases, its integration to the
metrical period i∗ is carried out if it is close enough, both
in time domain (d(t, i)) and in tempo domain (d3(t, i)):

d(t, i) < δ and d3(t, i) < ε (9)

In a second step, we check whether the periodicity peak
triggers the addition of a new metrical layer in that metrical
grid:

• For all the slower metrical layers i, we find those that
have a theoretical period that is in integer ratio with
the peak lag t:

min

(
τi(n)

t
mod 1, 1−

(
τi(n)

t
mod 1

))
< ε

(10)
where ε is set to to .02 if no other stronger peak in
the current time frame n has been identified with the
metrical grid, and else to .1 in the other case.

If we find several of those slower periods in inte-
ger ratio, we select the fastest one, unless we find a
slower one with a ratio defined in equation 10 that
would be closer to 0.

• Similarly, for all the faster metrical layers, i we find
those that have a theoretical pulse lag that is in inte-
ger ratio with the peak lag:

min

(
t

τi(n)
mod 1, 1−

(
t

τi(n)
mod 1

))
< ε

(11)

• If we have found both a slower and a faster period,
we select the one with stronger periodicity score.

• This metrical layer, of index iR, will be used as ref-
erence onto which the new discovered metrical layer
is based. The new metrical index i∗ is defined as:

i∗ = iR ∗
[

t

τi(n)

]
(12)

Finally, if the strongest periodicity peak in the given time
frame n is strong enough (with periodicity score above a
certain threshold θ) and is not associated with any period
of the metrical grid(s) currently active, a new metrical grid
is created, with a single metrical period (with i = 1) related
to that peak.



All active metrical grids are tracked in parallel, by ten-
tatively mapping the peaks of the periodicity curve on the
periods of each grid.

A metrical grid stops being further extended whenever
there in no peak in the given frame that can extend any
of the dominant periods. Mechanisms have also been con-
ceived to fuse multiple grids whenever it turns out that they
belong to a single hierarchy.

The global tempo associated to the metrical grid is up-
dated based on the actual lags measured along the different
metrical periods in the current frame n. For each metrical
period i and for the peak lag ti associated to it, we obtain
a particular estimation of the global lag (i.e., the lag at pe-
riodicity index 1), namely ti

i . We can then obtain a global
estimation of the global lag by averaging these tempo esti-
mation at different periods, using as a weight the autocor-
relation score si of those peaks:

τ1(n) =

∑
i∈D si

ti
i∑

i∈D si
(13)

Not all metrical periods are considered, because there can
be a very large number of those, and many of the higher pe-
riods are only redundant information that tend to be unreli-
able. For that reason, a selection of the most important—or
dominant—metrical periods is performed, corresponding
to the set D in previous equation. Each time a new metri-
cal grid is initiated, the first metrical period (i = 1) is con-
sidered as dominant. Any other metrical period i becomes
dominant whenever the last peak integrated is strong (i.e.,
with an autocorrelation score higher than a given threshold
θ) and if the reference metrical period upon which layer i
is based is also dominant.

The actual updating of the global tempo is somewhat more
complex than the description given in the previous para-
graph, because we consider the evolution of the tempo from
the previous frame to the current frame, and limit the am-
plitude of the tempo change up to a certain threshold. This
enables to add a certain kind of “inertia” to the model such
that unrelated periodicities in the signal will not lead to
sharp discontinuity in the tempo curves.

Values used for some parameters defined in this section:
δ = .07, ε = .2, θ = .15.

3.4 Metrical structure

The metrical grids constructed by the tracking method pre-
sented in the previous paragraph are so far made of a mere
superposition of metrical periods. The ratio number asso-
ciated with each metrical level should be considered rela-
tively. For instance, the value 1 has no absolute meaning,
it is arbitrarily given to the first level detected. Level 1.5 is
3 times slower than level .5. For each metrical grid, one or
several of its metrical periods have been characterized as
dominant because of their salience at particular instants of
the temporal development of the metrical grid, and because
such selection offers helpful guiding points throughout the
temporal tracking of the metrical grid. Yet these selected
dominant metrical periods simply highlight particular ar-
ticulation of the surface and do not necessarily relate to the
core metrical levels of the actual metrical structure.

A metrical structure is composed of a certain number of
metrical levels: they are particular periods of the metrical
grid that are multiple of each other. For instance, in a typ-
ical meter of time signature 4/4, the main metrical level is
the quarter note, the upper levels are the half note and the
whole note, the lower levels are the eighth note, the six-
teenth note, and any other subdivision by 2 of these levels.
In the same example, dotted half note (corresponding to
three quarter notes) is related to one metrical period in the
metrical grid, because it is explicitly represented in the au-
tocorrelation function as a possible periodicity, but it is not
considered as a metrical level.

In the graphical representations shown in Figures 2, 3 and
4, the metrical levels are shown in black while the other
metrical layers are shown in gray.

The metrical structure offers core information about me-
ter. In particular, tempo corresponds to beat periodicity at
one particular metrical level. In a typical metre, the main
metrical level could be used as the tempo reference. In our
example, with a typical time signature 4/4, the tempo could
be inferred by reporting the period at the metrical level cor-
responding to the quarter note. However, in practice, there
can be ambiguity related to the actual metre, and especially
related to the choice of the main metrical level.

For each metrical periodicity i can be associated a nu-
merical score Si, computed as a summation across frames
of the related periodicity score si,n for each frame n. The
metrical periodicities i are progressively considered in de-
creasing order of score Si as potential metrical levels.

In a first attempt, we integrate all possible periodicities as
long as they form a coherent metrical structure. The met-
rical structure is initially made of one single metrical level
corresponding to the strongest periodicity. Each remaining
metrical period P , from strongest to weakest, is progres-
sively compared with the metrical levels of the metrical
structure, in order to check that for each metrical level L,
P has a periodicity that is a multiple of L, or reversely. In
such case, P is integrated into the metrical structure as a
new metrical level.

This method may infer incorrect metrical structures in
the presence of a strong accentuated metrical period that
is not considered as a metrical level. This often happens in
syncopated rhythm. For instance, a binary 4/4 metre with
strong use of dotted quarter notes could lead to strongest
periodicities at the eighth note (let’s set this period to i =
1), dotted quarter note (i = 3) and whole note (i = 8).
One example is the rhythmical pattern 123-123-12, 123-
123-12, etc. In such case, if the periodicities related to dot-
ted quarter note (i = 3) is stronger than the periodicities
related to whole note (i = 8), the first method would con-
sider the metre to be ternary, of the form 6/8 for instance.

In order to solve the limitation of the first method, a more
elaborate method constructs all possible metrical structures,
with metrical levels taken from the series of metrical peri-
ods from the input metrical grid. To each metrical structure
is associated a score obtained by summing the score related
to each selected level. The metrical structure with highest
score is finally selected. In our example, alternative met-
rical structures are constructed, both for ternary rhythm—



Figure 2. Autocorrelation-based periodogram with tracking of the metrical structure for the first 140 seconds of a perfor-
mance of the first movement of J. S. Bach’s Brandenburg Concerto No. 2 in F major, BWV 1047. Each metrical layer is
indicated by a line of crosses extending from left to right, and preceded by a number indicating the index of the metrical
layer. When the line is interrupted at particular temporal regions, the remaining dotted line represents the temporal tempo
at that layer. Metrical levels are shown in black, while other metrical layers are shown in gray. See the text for further
explanation.

Figure 3. Autocorrelation-based periodogram with tracking of the metrical structure for the first 160 seconds of a perfor-
mance of the Scherzo of L. van Beethoven’s Symphony No. 9 in D minor, op.125, using the same graphical conventions as
in Figure 2. As before, numbers, indicating metrical layer indices, are displayed where the metrical layers are first detected.
For instance, layer 0.5, corresponding to the binary division of layer 1, appears at 40 seconds.

Figure 4. Autocorrelation-based periodogram with tracking of the metrical structure for the first 2 minutes of a performance
of the Allegro con fuoco of A. Dvorak’s New World Symphony, Symphony No. 9 in E minor, op. 95, B.178, using the same
graphical conventions as in Figure 2.



with metrical levels (1, 3, 6), or (1, 3, 9), etc.—and for bi-
nary rhythm—(1, 2, 8), (1, 2, 4, 8), etc. If the periodicity
corresponding to i = 8 is sufficiently strong, the binary
rhythm will be chosen by the model. Although i = 3 is
stronger than i = 8, the combination (1, 2, 8), for instance,
can be stronger than the combination (1, 3, 6).

The resulting metrical structure is made of a combina-
tion of metrical levels, i.e., a subset (i1, i2, . . .) of the met-
rical periods of the metrical grid. One metrical level iR
needs to be selected as reference level for the computation
of tempo. One simple strategy would consists in select-
ing the metrical level with highest score, as defined pre-
viously. However, those scores are based on purely sig-
nal processing method (namely, autocorrelation function),
and do not take into account the fact that certain periodici-
ties are more easily perceived than other. Studies have de-
signed so-called “resonance curves” that enable to weight
the periodicity score depending on the period, so that peri-
ods around typical range of periodicity around 120 BPMs
would be preferred [9, 10]. We follow the same method,
by weighting the metrical level scores Sij using the res-
onance curve proposed by [9], using as input to the res-
onance curve the median periodicity related to the given
metrical level.

4. COMPARATIVE EVALUATION

The original algorithm was submitted to the Audio Tempo
Extraction competition under the MIREX (Music Infor-
mation Retrieval Evaluation eXchange) annual campaign 2

This evaluation is made using 160 30-second excerpts of
pieces of music of highly diverse music genres but with
constant tempo. Listeners were asked to tap to the beat for
each excerpt. From this, a distribution of perceived tempo
was generated [11]. The two highest peaks in the perceived
tempo distribution for each excerpt were taken, along with
their respective heights as the two tempo candidates for
that particular excerpt. The height of a peak in the distri-
bution is assumed to represent the perceptual salience of
that tempo. Each algorithm participating to this MIREX
task should also return two tempo candidates for each ex-
cerpt, with corresponding salience. This ground-truth data
is then compared with the predicted tempo.

In 2013, our proposed model (OL) obtained the fourth 3

highest P-value, compared to models from 2006 to 2013,
as shown in Table 1. It can be noted that these three bet-
ter models are applicable only to music with stable tempo.
Since then, OL has been surpassed by the two aforemen-
tioned deep-learning models [1, 2].

The current improved version of OL was submitted to the
2018 competition. The frequency resolution of the spec-
trogram is decreased without damaging the results. In or-
der to filter out non-relevant peaks, the first peak at the
lowest lag in the autocorrelation function is constrained
to be preceded by a valley with negative autocorrelation.
When comparing pairs of metrical hierarchies, only the
most dominant levels of each hierarchy are selected in such

2 http://www.music-ir.org
3 FW already had a model in 2013 that surpassed OL.

a way that we compare hierarchies with same number of
levels. Finally, a periodicity that is higher than 140 BPM
cannot belong to the two selected metrical levels, except if
that fast pulsation is ternary, i.e., if the pulsation at the next
level is three times lower. OL 2018 does not offer any im-
provement in the results compared to the 2013 submission.

5. METRICAL DESCRIPTION

Tracking a large range of metrical levels enables to get a
detailed description of the dynamic evolution of the metri-
cal structure. For instance in Figure 3, the meter is initially
and for the most part ternary. However between 40 and 50
s. (corresponding to bars 77 to 92), a little before 80 s.
as well as between 120 and 130 s., we see that the ternary
rhythm is actually perceived as a binary rhythm, as shown
by the metrical level 0.5. Reversely in Figure 4, the meter
is initially binary, but turns ternary after 80 seconds.

What is particularly interesting in those examples is also
that the metrical structure changes, but the tempo remains
somewhat constant. This shows that tempo is not a suffi-
cient information for the description of metrical structure.

In order to give an indication of metrical activity that
would not reduce solely on tempo but takes into consid-
eration the activity on the various metrical levels, we in-
troduce a new measure, called dynamic metrical centroid,
which assesses metrical activity based on the computation
of the centroid of the periods of a range of selected metri-
cal levels, using their autocorrelation score as weight. The
metrical centroid values are expressed in BPM, so that they
can be compared with the tempo values also in BPM. High
values for the metrical centroid indicate that more elemen-
tary metrical levels (i.e., very fast levels corresponding to
very fast rhythmical values) predominate. Low values in-
dicate on the contrary that higher metrical levels (i.e., slow
pulsations corresponding to whole notes, bars, etc.) pre-
dominate. If one particular level is particularly dominant,
the value of the metrical centroid naturally approaches the
corresponding tempo value on that particular level.

Figure 5 shows the dynamic metrical centroid curve re-
lated to the Allegro con fuoco of A. Dvorak’s New World
Symphony as shown in Figure 4. The temporal evolution of
the dynamic metrical centroid clearly reflects the change
of rhythmical activity between the different metrical lev-
els, and the transition between binary and ternary rhythm,
which increases the overall perceived rhythmical speed.

6. DISCUSSION

The computational model OL was integrated into the ver-
sion 1.6 of the open-source Matlab toolbox MIRtoolbox
[12]. It also includes Goto’s aforementioned accentuation
curve algorithm [7]. The updated version of OL submitted
to MIREX 2018 is integrated into version 1.8 of MIRtool-
box.

One main limitation of all current approaches in tempo
estimation and beat tracking is that the search for period-
icity is carried out on a percussive representation of the
audio recording or the score, indicating bursts of energies
or spectral discontinuities due to note attacks and changes.



Contestant SB HS EF FW GK OL AK QH NW DP ES TL GP FK CD ZG AD SP MD DE AP PB GT CB ZL BD
Year 20.. 15 18 13 15 11 13 06 14 10 06 10 10 12 12 13 11 06 11 14 06 06 06 10 13 18 14
Reference [1] [2] [4] [5]
P-score .90 .88 .86 .83 .83 .82 .81 .80 .79 .78 .77 .76 .75 .75 .74 .73 .72 .71 .69 .67 .67 .63 .62 .61 .60 .54
1 tempo .99 .98 .94 .95 .94 .92 .94 .92 .91 .93 .91 .89 .86 .85 .91 .82 .89 .93 .85 .79 .84 .79 .69 .85 .68 .64
both tempi .69 .66 .69 .57 .62 .57 .61 .56 .50 .46 .55 .48 .61 .62 .55 .57 .46 .39 .47 .43 .48 .51 .51 .26 .46 .38

Table 1. Comparison of MIREX results from all contestants of MIREX Audio Tempo Extraction from 2006 to 2018. For
each author, only the model yielding best P-score is shown. The model presented in this paper is shown in bold.
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Figure 5. Dynamic metrical centroid curve for the same performance of the Allegro con fuoco of A. Dvorak’s New World
Symphony analysed in Figure 4.

Beyond this percussive dimension, other musical dimen-
sions can contribute to rhythm. In particular, successive
repetitions of patterns can be expressed in dimensions not
necessarily conveyed percussively, such as pitch and har-
mony. This shows the necessity of developing methods for
metrical analysis related not only to percussive regulari-
ties, but also to higher-level musicological aspects such as
motivic patterns and harmonic regularities.

Acknowledgments

This work was partially supported by the Research Coun-
cil of Norway through its Centres of Excellence scheme,
project number 262762. This work was also partially sup-
ported by the Swiss Center for Affective Sciences. The
selection of musical materials has benefitted from collabo-
rations with Kim Eliard and Marc-André Rappaz.
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