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ABSTRACT

Augmented mobile instruments combine digitally-
fabricated elements, sensors, and smartphones to create
novel musical instruments. Communication between
the sensors and the smartphone can be challenging as
there doesn’t exist a universal lightweight way to connect
external elements to this type of device. In this paper, we
investigate the use of two techniques to transmit sensor
data through the built-in audio jack input of a smartphone:
digital data transmission using the Bell 202 signaling
technique, and analog signal transmission using digital
amplitude modulation and demodulation with Goertzel
filters. We also introduce tools to implement such systems
using the FAUST programming language and the Teensy
development board.

1. INTRODUCTION

For about a decade, smartphones have been used as mu-
sical instruments [1, 2]. The fact that they combine in
a single entity various sensors (e.g., accelerometers, gy-
roscope, touch screen, etc.), a speaker, a microphone, a
battery, an Analog to Digital Converter (ADC)/Digital to
Analog Converter (DAC), and a powerful processor that
can be used for sound synthesis/processing make them a
great platform to implement standalone Digital Musical
Instruments (DMIs). However, smartphones were never
designed to be used as such and they lack some crucial
elements to compete with their acoustic counterparts. In
previous works, we tried to solve this problem by augment-
ing smartphones with passive [3] and active [4] elements.
While passive augmentations consist of purely acoustic el-
ements free from electronics, active augmentations typi-
cally combine sensors, a microcontroller, and some sort of
casing.

Transmitting sensor data between the microcontroller and
the mobile device is often a source of problems and there
currently doesn’t exist a standard and comprehensive way
to do this.

MIDI is commonly used for this task as it is the only
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communication standard supported by all smartphones. In-
deed, most external devices must be approved by Apple
before they can be connected to an iPhone/iPad, but that’s
not the case of MIDI devices.

MIDI can be transmitted over USB or via Bluetooth.
USB requires the use of a USB adapter in most cases and
Bluetooth implies more complex circuitry and significantly
increases the price of the augmentation.

Active augmentations also often involve the use of an ex-
ternal speaker/amplifier (i.e., the built-in speakers of smart-
phones are often weak and low quality) that needs to be
connected to the audio jack of the smartphone. In that case,
two cables must be plugged to the smartphone (i.e., one
USB for the microconctroller and one audio cable) which
is far from being an optimal solution (not to mention that
more and more smartphones don’t have a built-in audio
jack). An alternative solution to this is to use an external
USB ADC, which requires complex multiplexing opera-
tions with the micocontroller since the same USB port has
to be used.

In this paper, 1 we present a simple lightweight solu-
tion to this problem where sensor data is transmitted to
the smartphone using its audio input on its four pins au-
dio jack (devices without a built-in audio jack can use an
adapter that would be needed to retrieve the output audio
signal anyway). Two techniques using respectively digital
or analog data are considered:

• digital data transmission using the Bell 202 signaling
technique (i.e., modem),

• analog signal transmission using digital amplitude
modulation and demodulation with Goertzel filters.

The Bell 202 approach has been commonly used for
transmitting digital data from an external device to a smart-
phone through its audio jack input. The Square Credit Card
Reader 2 and the system presented by Kuo et al. [5] (to
only cite a few) all use this technique. On the other hand,
to the best of our knowledge, digital amplitude modulation
has never been used in this context.

Many microcontrollers such as the ARM Cortex-M4 3

used on the Teensy development board series 4 host their
1 Demos and additional information about this project can be

found at this URL: https://ccrma.stanford.edu/˜rmichon/
analog-transmit.

2 https://squareup.com/us/en/hardware/reader
3 https://developer.arm.com/products/

processors/cortex-m/cortex-m4
4 https://www.pjrc.com/teensy
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Figure 1. Smartphone augmentation connection with a 4
pins audio jack.

own Pulse Width Modulation (PWM) DAC. Hence, they
can be utilized to synthesize sound and play it back in real-
time. 5 In a companion paper [6], we introduce a system
where the FAUST programming language [7] can be used
to program Digital Signal Processing (DSP) algorithms for
the Teensy.

In the systems presented in the current paper, the Teensy
DAC is used to transmit data to the smartphone. Both
the Bell 202 and the Amplitude Modulation (AM) trans-
mission techniques are implemented, evaluated, and com-
pared.

2. HARDWARE

All the systems presented in this paper are based on the
same hardware set-up which consists in a smartphone aug-
mentation [4] connected to a smartphone through a 4 pins
audio jack (see Figure 1). The two upper pins are used
to carry the left and right audio channels out of the smart-
phone. The third pin (from the tip) is the ground, and the
fourth pin (from the tip) carries sensor data from the mi-
crocontroller to the smartphone. The impedance between
the fourth pin and the ground is 700Ω. This is important
because the smartphone uses this as the trigger to activate
its line input instead of using its built-in microphone. This
value is also used as a reference to configure the gain of
the built-in preamp.

We used a Teensy 3.2 in our system. It is based on
an ARM Cortex-M4 microcontroller which hosts its own
12 bits PWM DAC running at 44.1KHz by default. The
lack of reconstruction filter is compensated by the use of a
10µF capacitor connected in series between the DAC out-
put and the fourth pin of the audio jack (see Figures 4-5).
While this would not be sufficient to render a good quality
audio signal, this is more than acceptable for the type of
use that we make of it (see Section. 3-4).

3. BELL 202 SIGNALING TECHNIQUE
APPROACH

The Bell 202 signaling technique allows for the serial
transmission of bits at a maximum rate of 1200 baud. It
uses Frequency Shift Keying (FSK) where “digital zeros”
are represented by 1200 Hz tones and “digital ones” by
2200 Hz tones. Tones are typically synthesized using a
square wave, so a simple digital output is theoretically suf-
ficient to generate the corresponding analog audio signal.
Instead, we preferred to use the built-in DAC of the Cortex-
M4 microcontroller in order to implement a comprehen-
sive solution only using FAUST.

5 https://www.pjrc.com/teensy/td_libs_Audio.
html

Figure 2. FAUST-generated block diagram of a program
encoding four streams of data using the Bell 202 signaling
technique.

3.1 Transmitting Data

The bell202_mod FAUST function 6 takes a stream of bits
coded on audio samples and encodes it using the Bell 202
technique (essentially, the value of each bit determines/-
modulates the frequency of the generated square wave).

Continuous sensor values (e.g., retrieved by an analog in-
put on the Teensy) or any other type of data can be con-
verted to 9 bits Universal Asynchronous Receiver/Trans-
mitter (UART) packets coded on a stream of audio sam-
ples using the uart_tx_encoder function (see Figure 4).
uart_tx_encoder takes three arguments: the number of
parallel streams (channels) of data to be sent, a list indi-
cating the channel number of each stream, and a value in-
dicating if data should be transmitted or not (one for true,
zero for false). For example, the following FAUST program
will send four streams of data on channels 0, 1, 2, and 3:

import("stdfaust.lib");
process = cm.uart_tx_encoder(4,(0,1,2,3),1)

: cm.bell202_mod;

The block diagram corresponding to this FAUST program
can be seen in Figure 2.

UART packets produced by uart_tx_encoder contain
a 7 bits value, a start bit, and a stop bit. Since the chan-
nel number needs to be sent along with the corresponding
value, a single value (i.e., sensor) requires a total of 18bits
(two full UART packets: one for the channel number and
one for the value). If the data transmission parameter of
uart_tx_encoder (third argument) is set to false, then
a stream of “one bit” is produced (that’s a standard of the
UART protocol). This might be used for the potential syn-
chronization of the sender device (i.e., Teensy) with the
receiver (i.e., smartphone) in case it is plugged to it after
the receiver program (i.e., app) was launched.

6 All the FAUST functions presented in this paper have been added
to the communications.lib library that can be found in the
FAUST libraries repository: https://github.com/grame-cncm/
faustlibraries.
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Since bits are encoded at a rate of 1200 baud
by bell202_mod, the bit stream produced by
uart_tx_encoder is synchronized to that rate and
several audio samples will likely contain the same bit
value, depending on the audio sampling rate of the system.
uart_tx is a function that automatically associates

FAUST User Interface (UI) elements to streams of values
transmitted with uart_tx_encoder. Its single argument
is the number of parallel stream of data (channels) to trans-
mit. For example:

import("stdfaust.lib");
process = cm.uart_tx_encoder(4) : cm.

bell202_mod;

sends 4 parallel streams that can be addressed on the
Teensy side using the setParamValue method of the
corresponding object generated with faust2teensy or
faust2api [6]. Hence, the loop function on the Teensy
could look like:

void loop() {
int val0 = analogRead(A0)*127/1024;
int val1 = analogRead(A1)*127/1024;
int val2 = analogRead(A2)*127/1024;
int val3 = analogRead(A3)*127/1024;
faust.setParamValue("0",val0);
faust.setParamValue("1",val1);
faust.setParamValue("2",val2);
faust.setParamValue("3",val3);

}

where faust is a FAUST object produced with
faust2api [6], and the first argument of the
setParamValue method the FAUST parameter name
automatically generated by the uart_tx function corre-
sponding to the channel number on which the value should
be transmitted.

Note that it is also possible to write a FAUST program
to carry out the same task without writing a single line of
Arduino code using faust2teensy [6]. In that case,
analog and digital inputs of the Teensy can be mapped to
FAUST UI elements using metadata:

val0 = nentry("val0[io: A0]",0,0,127,1);
process = val0 :
cm.uart_tx_encoder(1,(0),1) :
cm.bell202_mod;

3.2 Receiving Data

Data transmitted by the microcontroller using the tech-
nique presented in Section. 3.1 can be decoded directly
in the FAUST program implementing the app running on
the smartphone (see Figure 4). This app was gener-
ated with faust2smartkeyb [8]. The bell202_demod

function can be used to decode the signal produced by
bell202_mod on the Teensy to turn it into a stream of
bits encoded on a digital audio signal. The decoding al-
gorithm uses zero crossing detection and cross-corelation.
bell202_mod and bell202_demod are configured to
have the same baud so they don’t need to be parametrized.

Figure 3. FAUST-generated block diagram of a program
decoding two streams of data using the Bell 202 signaling
technique.
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Figure 4. Analog audio sensor data transmission between
a Teensy and a smartphone using the Bell 202 Signaling
Technique.

The uart_rx function takes a single argument allowing
us to specify the number of channels to be extracted from
the input bit stream. This number should be the same as the
one used with uart_tx_encode. uart_rx outputs audio
signals (one per channel) containing the transmitted data
for each individual channel. These signals (whose range is
0-127) can be used directly to control some sound synthe-
sis/processing parameter. In the following example, two
sensor data streams are decoded and used to control the
gain and the frequency of a sawtooth wave oscillator:

import("stdfaust.lib");
mapping = /(127),(/(127)*1900 + 100);
process =

cm.bell202_demod : cm.uart_rx(2) :
mapping : *(os.sawtooth);

4. DIGITAL AMPLITUDE MODULATION
APPROACH

This other method consists in carrying continuous sensor
signals on AM bands to the smartphone.

4.1 Transmitting Data

am_tx_encoder is a FAUST function working in a simi-
lar way than the combination of uart_tx_encoder and
bell202_mod (see Section. 3.1). Its first argument con-
figures the number of parallel streams to be transmitted
and its second argument is a list of channel numbers cor-
responding to each data stream input. For example, the
following FAUST program will send four streams of data
on channels 0, 1, 2, and 3:

import("stdfaust.lib");
process = cm.am_tx_encoder(4,(0,1,2,3));
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Figure 5. Analog audio sensor data transmission between
a Teensy and a smartphone using Amplitude Modulation.

One sine wave oscillator is used for each channel. Their
gain is modulated by individual sensor data. The frequency
of each oscillator is determined by the number of bands.
They are distributed between 50 and 20000 Hz (once again,
the sampling rate of the DAC on the Teensy is 44.1 KHz).
Of course, the gain of each sine oscillator is scaled in func-
tion of the number of bands, which means that more bands
means less dynamic range. In addition to that, a calibration
sine tone with maximum gain is constantly transmitted at
20 KHz to normalize the input signal on the smartphone
side in real-time. Hence, if four sensor streams are trans-
mitted, five sine tones will be generated.
am_tx works the same way than uart_tx and takes a

single argument which is the number of channels to be
transmitted. User interface elements are automatically
generated by this function and can be addressed on the
Teensy side using the setParamValue method (see Sec-
tion. 3.1).

4.2 Receiving Data

Data encoded by the am_tx function on the Teensy can be
decoded using am_rx on the smartphone. This function
takes a single argument which corresponds to the number
of data streams to be decoded/demodulated. This num-
ber should be the same as the one used with am_tx on the
Teensy. am_rx outputs audio signals (one per channel)
containing the transmitted data for each individual chan-
nel. These signals (whose range is 0-127) can be used di-
rectly to control some sound synthesis/processing parame-
ter. In the following example, two sensor data streams are
decoded and used to control the gain and the frequency of
a sawtooth wave oscillator:

import("stdfaust.lib");
mapping = /(127),(/(127)*1900 + 100);
process =
cm.am_rx(2) : mapping : *(os.sawtooth);

am_rx uses Goertzel filters [9] to efficiently extract the
amplitude of each band. The filters block/window size is
automatically adapted in function of the number of bands
to be decoded. A greater block size will provide more pre-
cision in the frequency domain but will add more latency.
Hence, more bands means more delay (see Section. 5).

Other demodulation techniques were tested (e.g., band-
pass filters, etc.) but Goertzel filters provided the best re-
sults in this context.

5. EVALUATION

Table 1 compares the performance of the data transmission
techniques presented in Section. 3 and Section. 4 for var-
ious numbers of parallel channels. Latency and bit depth
are the two main parameters that are considered.

A single channel transmitted with the 202 technique cor-
responds to a latency of ∼15ms (18 bits are required to
transmit one value at a bit rate of 1200 bits/s so 1

(1200/18) ).
Hence, every new channel will add a latency of ∼15ms.
On the other hand, latency when using the AM technique
is determined by the block size of the Goertzel filter which
is automatically computed by am_tx_encoder in func-
tion of the number of channels (see Section. 4.2). Note
that overall, this method provides much better latency per-
formances than the 202 approach.

The bit depth of the data transmitted with the 202 tech-
nique is constant (7 bits by default) and can be decided by
the programmer. A greater bit depth means more preci-
sion but will also add more latency. For the AM technique,
the precision/range of the data depends on the number of
channels to be transmitted. Since the built-in DAC of the
Cortex-M4 can produce 12 bits values, the range of data
when transmitting a single channel is 2048 (212/2 where
the division by two corresponds to the number of carriers:
here one for the data and one for the calibration signal).
In practice, the range of the data for the AM technique is
probably slightly smaller because of potential noise in the
signal, but this type of parameter is hard to measure effi-
ciently.

The Goertzel filter demodulation approach used with
the AM transmission technique has proven very effective.
Also, since the carriers are modulated at a rate of approx-
imately 440 Hz, sidebands are not an issue as long as the
frequency of each carrier is more than 880 Hz appart (i.e.,
if more than 20 channels were needed this rate could to be
lowered, etc.).

All in all, both techniques present advantages. The 202
approach is obviously more reliable but it is also less pow-
erful than the AM method, especially when a large number
of parallel streams of data must be transmitted. It is also
technically more complex to implement.

6. CONCLUSIONS

The built-in analog audio input of smartphones provides
a convenient and standard way to acquire sensor data
from a microcontroller to control sound synthesis/process-
ing parameters. This is very helpful in the context of
active smartphone augmentations where “prosthetics” are
mounted on the device to expand its affordances.

In this paper, two transmission techniques usable in this
context as well as their associated tools were presented
and compared. They seamlessly integrate to the existing
panoply of FAUST-based tools to create musical instru-
ments with augmented smartphones.

We believe that this approach solves various issues by
providing a standard universal way to connect to smart-
phones and by offering better performances than other
standards such as USB/Bluetooth MIDI, etc.



N Channels 202 Latency AM Latency AM Goertzel Block Size 202 Range AM Range
1 ∼15ms ∼6ms 256 128 (7 bits) 2048
2 ∼30ms ∼6ms 256 128 (7 bits) 1365
3 ∼45ms ∼11ms 512 128 (7 bits) 1024
4 ∼60ms ∼11ms 512 128 (7 bits) 818
5 ∼75ms ∼23ms 1024 128 (7 bits) 683

10 ∼150ms ∼23ms 1024 128 (7 bits) 372
15 ∼225ms ∼46ms 2048 128 (7 bits) 256
20 ∼300ms ∼46ms 2048 128 (7 bits) 204

Table 1. Comparison of the Bell 202 signaling technique with the amplitude modulation transmission approach.
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