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ABSTRACT

Currently, developing immersive music environments for 
extended reality (XR) can be a tedious process requiring 
designers to build 3D audio controllers from scratch. OSC-
XR is a toolkit for Unity intended to speed up this process 
through rapid prototyping, enabling research in this emerg-
ing field. Designed with multi-touch OSC controllers in 
mind, OSC-XR simplifies the process of designing immer-
sive music environments by providing prebuilt OSC con-
trollers and Unity scripts for designing custom ones. In 
this work, we describe the toolkit’s infrastructure and per-
form an evaluation of the controllers to validate the gen-
erated control data. In addition to OSC-XR, we present 
UnityOscLib, a simplified OSC library for Unity utilized 
by OSC-XR. We implemented three use cases, using OSC-
XR, to inform its design and demonstrate its capabilities. 
The Sonic Playground is an immersive environment for 
controlling audio patches. Hyperemin is an XR hyper-
instrument environment in which we augment a physical 
theremin with OSC-XR controllers for real-time control of 
audio processing. Lastly, we add OSC-XR controllers to 
an immersive T-SNE visualization of music genre data for 
enhanced exploration and sonification of the data. Through 
these use cases, we explore and discuss the affordances of 
OSC-XR and immersive music interfaces.

1. INTRODUCTION

In 1992 Jaron Lanier performed The Sound of One Hand, 
a live improvisation using the three instruments designed 
for the EyePhone (an early virtual reality headset) [1]. A 
remarkable aspect of his performance (aside from the tech-
nologies) was that Lanier was able to simultaneously play 
multiple instruments to perform music that could not easily 
have been performed with traditional instruments. Lanier’s 
work showed the potential for immersive musical perfor-
mances, but since then there has been limited research ex-
ploring the musical interactions afforded by virtual real-
ity (VR) and related extended reality (XR) technologies. 
When Serafin et al. [2] recently surveyed the state of art 
in virtual reality music instruments (VRMIs) in 2016, the 
number of interfaces available was fairly small. The capa-
bilities and relatively few design constraints of XR create
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the potential for a wide array of immersive interfaces based
on any of Miranda and Wanderley’s four categories of mu-
sic interfaces: Augmented Musical Instruments, Instrument
Like Controllers, Instrument Inspired Controllers, and Al-
ternate Controllers [3]. With such broad possibilities,
more research is needed to increase our understanding of
the affordances of immersive environments and interaction
techniques best suited for music control.

To support further research into immersive interfaces for
music, we present OSC-XR, a toolkit for rapidly proto-
typing immersive musical environments in XR using Open
Sound Control (OSC), a communication protocol widely
used in audio software [4]. Influenced by multi-touch OSC
controllers, OSC-XR provides developers with a wide range
of readily available components in order to make design-
ing immersive environment more accessible to researchers
and sound designers. In this paper, we discuss the infras-
tructure of OSC-XR, validate its generated data by compar-
ing with a popular multi-touch OSC controller, and present
three environments developed to demonstrate its capabili-
ties for immersive interface design.

2. RELATED WORK

2.1 XR Music Interfaces

In one of the first research studies on virtual music per-
formance, Mulder, Fels and Mase [5] designed virtual 3D
instruments that users interacted with using CyberGloves
and motion tracking sensors. While the instruments were
not displayed in an immersive environment, they did ex-
plore interactions in 3D desired for immersive performances.
Using a fully immersive environment, Mäki-Patola et al. [6]
developed and analyzed four immersive music interfaces
based on physical models. In their findings, they reported
that because VR is a different medium compared to the real
world, mimicking traditional instruments in immersive en-
vironments may not result in better instruments unless it is
used to augment real instruments with additional control.
Rather than mimicking existing instruments,
Berthaut et al. [7] proposed 3D reactive widgets for mu-
sical performance with interactions that went beyond what
is possible in the real world. The reactive widgets repre-
sented complex multi-process sounds with many parame-
ters that would be difficult to interact with in the real world.
Using VR with carefully designed gestures and audiovisual
mappings allowed the user to easily interact with multiple
widgets to generate an expressive musical interaction. In
these examples, music performance was controlled using
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self contained virtual objects tightly coupled with sound
generation limiting customization or extensibility.

A immersive interface proposed by Moore et al. [8], called
The Wedge, allowed users to not only perform music in
VR but also build and customize their performance en-
vironment. With this interface a user could build a cus-
tomized performance environment by selecting and com-
bining note objects from a palette to form musical chords
and sequences. The interface used two simple gestures
for interaction, one gesture for playing notes and another
gesture for building the interface by placing notes within
the environment. The interface had limited capabilities
for generating sounds as complex as the previously dis-
cussed reactive widgets but showed how XR can be used
to quickly build customized interfaces for musical perfor-
mance. Our work takes inspiration from this previous re-
search while also allowing users to build more complex
sound environments through customizable OSC controllers.

The previous works all rely on interaction with virtual ob-
jects through standard input devices, like hand controllers
or data gloves. Bottcher et al. [9] instead proposed a VRMI
for interacting with tangible music controllers. In this work,
the authors built physical flute and drum like controllers
which were represented in the virtual environment as 3D
objects. Interaction with the controllers was mapped to the
parameters of a physical model. By moving the controllers,
the user was able to change the dimensions of the physical
model, and it’s virtual representation in real-time, while si-
multaneously using it for a musical control. Using tangible
interfaces as controllers for virtual music performance pro-
vided users with a clear understanding of the affordances
and constraints for interaction.

The presented works provide interesting use cases and
examples of immersive environments for musical perfor-
mance that demonstrate the potential of using XR for mu-
sical expression. For a more extensive overview of recent
VRMI see the survey on the current state of the the art
by Serafin et al. [2]. The systems presented, however, are
standalone and have limited capabilities for designing new
environments. OSC-XR provides designers with a more
general toolkit to make building and prototyping new mu-
sical environments more accessible.

2.2 OSC Controllers

During their research on OSC, Wessel and Wright [4] dis-
cussed the affordances of using digitized tablets for musi-
cal control as well as potential mapping strategies for ges-
tural control of music. This work has inspired a number
of multi-touch OSC based control surfaces. TouchOSC 1

is one of the most popular multi-touch controller applica-
tions. It provides users with prebuilt layouts using Tou-
chOSC’s standard control widgets. In addition to the set
of existing control interfaces, users may also use the Tou-
chOSC Editor to build their own interfaces from the pre-
built widgets. The authors of two other multi-touch toolk-
its, Argos [10] and Control [11], cited the influence of Tou-
chOSC on their flexible design.

1 https://hexler.net/software/touchosc

Argos was an application for building multi-touch inter-
faces for musical control using OSC [10]. Using Argos
users were able to design control interfaces from a library
of prebuilt widgets, such as knobs, sliders and buttons. Ad-
ditionally, Argos provided developers a set of C++ classes,
built on openFrameworks, for creating their own widgets.
Similarly, Control, let users design custom interfaces from
a set of prebuilt widgets using JSON to define the interface
structure [11]. Control was set apart from from other in-
terfaces by giving users the ability to add customized func-
tions to their widgets using JavaScript. The popularity of
multi-touch OSC controllers, especially TouchOSC, show
that OSC based applications with flexible design support
needs of designers. While these applications were all de-
signed for multi-touch surfaces, OSC-XR is inspired by
the underlying theme of flexible design through prebuilt
objects and customized scripting.

Multi-touch devices are not the only place OSC has been
used to build control environments. Hamilton [12] used
OSC in the design of UDKOSC, a immersive musical per-
formance environment for the Unreal Development Kit
(UDK). With this system Hamilton was able to perform
in an immersive environment using avatars that interacted
with objects in the virtual environment. Our work differs
from Hamilton’s in that OSC-XR uses a design metaphor
based on standard music control idioms rather than the
game like metaphor seen in Hamilton’s work.

2.3 Audio Programming in XR

Immersive environments for XR are typically developed
using dedicated game engines, such as Unity 2 or Unreal
Engine 3 , which are designed to simplify the process of
developing 3D environments through a suite of tools that
include advanced graphics rendering pipelines and physics
engines. They also include sound engines for playback of
sound files with mixing, added effects and sound spatial-
ization. There is, however, minimal support in game en-
gines for audio synthesis capabilities desired by sound de-
signers. Unreal Engine has an experimental package for
sound synthesis 4 but the limited features of the environ-
ment may not provide sound designers with the full tool
set provided existing audio programing languages. To sup-
port the design of immersive music environments there is
a need for more robust audio synthesis capabilities.

Currently there are a some audio programming languages
that support audio synthesis and processing with Unity.
Faust, for example, can compile to a C library for use as
a Unity Plugin [13] and LibPD has a C# wrapper that can
be integrated with Unity [14]. Most recently, a plugin to
support the use of ChucK within the Unity development
environment, called Chunity, was developed [15]. While
these systems all add support for audio synthesis to Unity,
designers must use Unity scripting to setup parametric con-
trol of the patches. Because OSC-XR uses OSC for con-
trol, it allows designers to directly integrate their favorite
audio synthesis tools into the design process.

2 https://unity3d.com
3 https://www.unrealengine.com
4 http://bit.ly/UnrealSynth



(a) The OSC Transmitter Interface (b) The OSC Receiver Interface (c) The OSC-XR Slider Interface

Figure 1: Example Unity Inspector Interfaces for OSC-XR

3. UNITY OSC LIBRARY

To implement OSC in Unity, many projects have used Jorge
Garcia’s UnityOSC library 5 . We have found this library to
be somewhat difficult to integrate in new projects. To sim-
plify the process of OSC configuration we present a new
library, UnityOscLib, that builds on Garcia’s core OSC
classes and integrates them into the Unity development
work flow. The new library simplifies configuration by im-
plementing separate MonoBehaviour (a Unity base class
from which all Unity scripts must be derived) classes for
receiving and transmitting OSC messages. The configu-
ration process has also been simplified by exposing OSC
properties in the Unity Inspector as well as through Unity
scripting. At the time of writing, we have not exposed OSC
bundles or timestamps through the UnityOscLib API (but
plan to do so in a later release). This section briefly intro-
duces the new library while complete details, including ex-
amples, can be found on the project’s Github repository 6 .

The OscTransmitManager is a Unity MonoBehaviour
that handles all aspects of transmitting OSC messages. To
send OSC messages from a Unity application, add the OSC
transmit manager to one GameObject and configure con-
nection information for one or more OSC receivers. OSC
receiver configuration details are exposed through the Unity
Inspector, as shown in Fig. 1a, in addition to the scripting
interface using the AddReceiver method. Once config-
ured, the environment is ready to transmit OSC messages
using SendOscMessage or SendOscMessageAll.

The OSC transmit manager also implements an optional
control rate feature, to configure the frequency of OSC
message transmission. Transmitting OSC messages may
be triggered by specific events that only occur periodically,
such as collision events, but they may also be triggered
continuously, for example when an objects position is chang-
ing. This type of continuous data is generally calculated at
a rate specified by Unity’s Update or FixedUpdatemes-
sages. With XR these messages typically occur at around
90 frames per second (FPS) or faster as technologies im-
prove. Audio applications may not be able to handle in-
coming messages at this rate. The UnityOscLib control
rate feature is implemented to limit the rate OSC messages
are transmitted. To use this feature, developers should reg-

5 https://github.com/jorgegarcia/UnityOSC
6 https://github.com/fortjohnson/UnityOscLib

ister a method that transmits OSC messages with the
OnSendOsc event of the OscTransmitManager. Any
methods registered withOnSendOsc will be called at the
control rate specified in the Unity Inspector.

The OscReceiverManger is a Unity MonoBehaviour

class that manages the routing and handling of incoming
OSC messages. To receive OSC messages in a Unity appli-
cation, add the OSC receiver manager to one GameObject
in the scene and configure the receiver with the port to
listen on, see Fig. 1b. OSC address routing is imple-
mented using Unity Events for configuration in the Unity
Inspector as well as using delegate events for C# script-
ing. To route messages based on in the inspector, Uni-
tyOscLib exposes an interface in the inspector to add any
number of OSC addresses and one or more handler meth-
ods for each address, see Fig. 1b. Additionally, the re-
ceiver manager’s RegisterOscAddress method is used
to add OSC addresses and event handlers through Unity
scripting. All OSC event handler methods used should ac-
cept a UnityOscLib OscMessage as an argument. This im-
plementation provides flexible implementation for adding
OSC handling during environment design or at runtime.

4. OSC-XR

The main contribution of this work is the OSC-XR toolkit
for designing immersive XR environments for music con-
trol. It is developed using Unity and UnityOscLib to pro-
vide sound designers a simple interface for prototyping in-
teractions in immersive environments. The OSC-XR toolkit
contains two main components for building environments,
1) a set of scripts that can be attached to any Unity
GameObject to transmit the object’s state via OSC and
2) a set of prebuilt music controller, called controller pre-
fabs, for transmitting control data via OSC, similar in con-
cept to widgets in TouchOSC. With this infrastructure, de-
velopers with limited Unity experience can quickly design
immersive music environments through the use of the con-
troller prefabs. Furthermore, more experienced developers
can easily extend custom GameObjects with OSC capa-
bilities through the scripting interface. Finally, the robust
Unity platform affords customization and extension of any
OSC-XR components to those familiar with Unity and C#.
The flexible design of OSC-XR, combined with the power
of Unity, supports rapid prototyping to make designing im-



Name Description Example OSC Message
OscSlider A slider prefab with position mapped to a configurable

range, see Figs. 1c and 3a
/slider/value 1 4.5

OscPad A drum prefab with pressed and released events including
an optional velocity, see Fig. 3a

/pad/pressed 1 1.5

OscGyro A virtual gyroscope prefab for sending angular velocities
normalized to a range of 0 to 1

/gyro/velocities 1 .9 .7 .5

OscTransform A script for sending transform data via OSC /trans/local/pos 1 0.5 1.3 2.0

OscTrigger A script for sending Unity Trigger events; includes an ID
and position information for the triggering object

/trigger/enter 1 0.5 0.4 1.0 2

Table 1: Examples of available OSC-XR controller prefabs and scripts. Refer to our GitHub repository for a complete list.

mersive environments quicker more accessible.
OSC-XR was developed using Unity and tested using the

Samsung Odyssey Windows Mixed Reality Headset [16]
with SteamVR [17]. By making use of the well known Vir-
tual Reality Toolkit (VRTK) [18], OSC-XR should work
with any of VRTK’s supported platforms and hardware,
affording multi-platform support. The remainder of this
section discusses the OSC-XR infrastructure. The details
we provide here are intended to give the reader high level
understanding of how the toolkit is structured but we en-
courage the reader to visit the project’s Github repository 7

for complete details, including video examples.

4.1 OSC Controller Prefabs and Scripts

Adding OSC controller prefabs to a Unity scene is the quick-
est way to get started with OSC-XR. To implement a con-
troller simply add the prefab from the OSCXR/Prefabs

folder to the Unity game hierarchy. Once added to the
scene, modify the object’s transform as desired. At this
point the object is ready to use in the environment. For
additional configuration each controller exposes a set of
properties in the Unity Inspector, see Fig. 1c. Table 1 lists
the descriptions of a few of the available OSC controller
prefabs, including an example OSC message for each. De-
velopers can further customize the controller prefabs us-
ing Unity tools. For example, the visual aspects of any of
the controller prefabs can be modified by configuring the
Unity components that comprise each object, such as the
meshes or materials.

The OSC-XR scripting interface allows developers to
quickly add OSC capabilities to any GameObject by at-
taching any of the readily available controller scripts to
the object. Each of the scripts models a predefined be-
haviour for triggering and sending OSC messages. By de-
fault adding an OSC controller script to a GameObject

uses that object’s state for creating and transmitting OSC
messages. This can be overridden on most scripts by up-
dating the Control Object property of the script with
a different GameObject, in which case, the state of the
configured Control Object will be used instead. This is
useful when building a composite object where the tracked
object is not the top level object. For example, the slider
controller prefab implements this design in which case the
state of prefab’s handle is used for control data, as seen

7 http://github.com/fortjohnson/OSC-XR

in Fig. 1c. Table 1 lists the descriptions of a few of the
available OSC-XR controller scripts, including an exam-
ple OSC message for each.

Designers wishing to build their own OSC controller scripts
should extend OSC-XR’s BaseOscController. This class
includes a number of base properties for OSC configura-
tion, the controller ID and the OSC address, as well as
methods for sending OSC messages. Furthermore, the class
automatically registers the method, ControlRateUpdate
to support transmitting OSC messages at the control rate
specified in the OSC transmit manager. Any controller
script that needs to send data at the configured control rate
should override ControlRateUpdate with a method that
generates and transmitting OSC data. Each custom script
should extend these options as needed to achieve the be-
haviour being modeled.

4.2 Control Data Validation

To ensure that data generated by OSC-XR is consistent
with users’ expectations, we employ two simple user tasks
for comparing OSC-XR with TouchOSC. An OSC receiver
is implemented to log data generated by each task for an
analysis of user performance. One task utilizes a slider
controller (or fader widget in TouchOSC) to validate the
control precision of the different applications. The sec-
ond task utilizes a pad controller (or button widget in Tou-
chOSC) to evaluate rhythmic control of the different in-
terfaces. One of the authors, who has intermediate musical
skills, performed the tests to validate that the data sent from
OSC-XR is consistent with existing systems.

4.2.1 Slider and Pad Evaluation

To perform the slider evaluation task, a user sets the po-
sition of the slider to specific values at regular time inter-
vals. For this work, the task requires setting the values of
the sliders to 0.25, 0.75, 0.50, and 1.00 in that order. The
user is required to transition the slider to each value on ev-
ery fourth beat at a tempo of 90 beats per minute (BPM)
indicated using a metronome. To perform a baseline anal-
ysis of the control data, a user performed the task ten times
in both OSC-XR and TouchOSC. The output of the user’s
performance is then compared to signal representing the
expected data, figures 2a and 2b show the results of each
run for both applications overlaid with the expected out-
put. The data is compared quantitatively by calculating
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Figure 2: The results of control data validation for slider controllers and pad controllers.

the euclidean distance between the actual and the expected
output to calculate an error value. This value is averaged
over all iterations for a final error metric. Table 2 lists the
average errors of this task for both interfaces.

To perform the pad evaluation task, a user presses a pad
controller for eight beats at a tempo of 90 BPM using a
metronome to keep time. As in the previous task, baseline
analysis of the data is captured with a user that performs
the task ten times. Results of each iteration are shown in
Figures 2c and 2d, for OSC-XR and TouchOSC respec-
tively. Each iteration is represented as a row of dots where
each dot in the row indicates a pad pressed event. For com-
parison the expected beat times are shown with the green
squares in the bottom row. The error for each iteration is
calculated as ∑N

n=1 | texp − tact |
N

(1)

where N is the number of beats per iteration, texp is the
expected time of the beat, tact is the actual time of the
pressed event from the user. The errors are averaged over
all iterations for the final error metric. The error results for
both interfaces are listed in Table 2.

4.2.2 Discussion

Results of the slider evaluation provide a baseline compar-
ison of OSC-XR with TouchOSC. Initial analysis of the
data shows similar performance between both applications
even though the interactions are slightly different. To move
slider in TouchOSC, a user slides their finger across the
surface to the new location. Whereas, the OSC-XR slider
requires an additional grab interaction to take control of
the slider handle before moving it towards its destination.
Overall, the OSC-XR slider error is slightly greater than
that of TouchOSC. We can compensate for this in OSC-
XR by adding a display prefab to the slider for additional
feedback. While the interactions required for manipulat-
ing sliders are different, this evaluation shows that OSC-
XR sliders may perform as well as multi-touch sliders and
generate data that is consistent with an application sound
designers may already familiar with.

OSC-XR also requires a different technique for interact-
ing with pads due to a lack of haptic feedback. When
pressing a pad in OSC-XR users are not provided the same
haptic response naturally afforded through interaction with
physical objects. Instead users must rely on wrist action

OSC-XR TouchOSC
Slider 3.43 2.98
Pad (ms) 35.2 52.0

Table 2: Average errors for each evaluation task

and hand controller momentum to control rhythm. Ini-
tial evaluation of the pad controller indicates this may not
adversely affect rhythmic performance. Results show that
the user was able to perform slightly more accurately with
OSC-XR. This may be a result of the user relying on wrist
action for control rather than pressing a pad with a single
finger. Although a larger study is needed to confirm any
hypotheses, users may expect rhythmic control from OSC-
XR that is consistent with TouchOSC.

5. OSC-XR USE CASES

In this section, we discuss three prototype use cases for im-
mersive environments developed with OSC-XR. Prototyp-
ing the environments helped inform the design OSC-XR.
Furthermore, the use cases demonstrate the capabilities of
the toolkit in different scenarios providing readers ideas on
how OSC-XR might be used for their own projects.

5.1 The Sonic Playground

The Sonic Playground is an immersive environment that
explores a variety of OSC-XR controllers. The playground
is composed of multiple zones each with a different per-
formance environment. Users are able to navigate between
the zones using teleportation, providing the ability to quickly
move between different performance environments. The
Sonic Playground is designed to explore and demonstrate
musical interaction with OSC-XR controllers that commu-
nicate with an external audio programming environment.

The Sampler Zone, seen in Fig. 3a, is an immersive sam-
pler environment composed of a 3 × 3 matrix of pad con-
trollers, to trigger sample playback, and a corresponding
matrix of sliders, for additional control of the samples.
Pads are configured to send the controller ID as well as
pressed and released with included velocity for mapping to
sample volume. Each slider is configured to send a value
ranging from 0.25 to 5.0 mapped in ChucK to the playback
rate of the corresponding sample. Pad and slider events



(a) The Sampler Zone (b) Hyperemin (c) T-SNE (d) T-SNE

Figure 3: Three immersive environments built using OSC-XR to explore its affordances

are all mapped to a corresponding sample using the con-
trollers’ IDs. This environment was developed as a proof-
of-concept to demonstrate and explore the affordances of
typical music controllers in immersive environments.

The first thing to notice in this environment is the size of
the objects. Using input controllers for interaction requires
the use of large objects as users lose the dexterity that is
naturally afforded through interactions using the hand. In-
tegrating hand tracking devices, such as the Leap Motion,
may allow for designing dexterous interactions. Another
challenge of performing in XR is the lack of haptic re-
sponse to physical actions, such as tapping a pad. Even
with these challenges, virtual pads in a musical environ-
ment afford their own interaction style with large expres-
sive motions and gestures. The evaluation of the pad con-
troller, discussed in Section 4.2, indicates that rhythmic
control may not be severely affected through the lack of
haptics and in this environment we learned the lack of hap-
tics affords a expressive playing style.

The Sonic Objects zone is an environment for prototyp-
ing interactive sound environments. It is composed of var-
ious OSC-XR controllers that are readily available to com-
municate with an audio programming environment, such
as ChucK. The environment affords the rapid prototyping
of interactive sound design by combining OSC-XR’s abil-
ity to easily add new controllers and interactions with the
power of ChucK’s development environment to quickly it-
erate on sound design.

One of the interesting affordances of immersive music
environments we explore is the combination of real life
physics based interactions with ”impossible” interactions
that ignore physics. For example, using physics we can
toss objects around or stack and lean them on each other to
create interesting soundscapes with generative audio patches.
Sometimes, however, a user may want to have more con-
trol over when parameters of an audio patch stop as they
reach a desired state. By ignoring the physics of an object
we can lock it in space to immediately stop it from send-
ing OSC messages. For example, an OscGyro object will
always send angular velocity data as its being moved, but
a user may want to lock in the sound parameters before re-
leasing the object. With this in mind, we decided to add an
interaction to freeze the OscGyro anywhere in space. Once
frozen the object will be suspended in space until the user

grabs the object to move it again. Another interesting affor-
dance we discovered through prototyping in this environ-
ment is the ability to easily add automation to controllers
through Unity components, such as animation or particle
systems. For example, the strongly timed behaviour of par-
ticle systems allows for particles to collide with an OSC
Trigger controller for initiating musical events at rhythmic
intervals. Furthermore, the movement of particles within
the controller may be mapped to other audio parameters,
such as frequency. These examples show how OSC-XR
supports rapid prototyping for exploring and creating new
musical interaction techniques in XR.

5.2 Virtual Hyperinstruments

In the NIME community it is common to augment a tra-
ditional instrument with sensors to extend its capabilities.
Machover and Chung [19] first presented work on this con-
cept with their hyperinstruments in 1989. Typically hyper-
instruments extend traditional instruments with direct aug-
mentation of an instrument, such as a violin, with physical
sensors [20]. Physical modification of an instrument can be
invasive to it’s design, therefore, non-invasive techniques
have also been developed for augmentation without physi-
cal modification, through the use of cameras and depth sen-
sors [21]. These techniques use gesture detection and ob-
ject tracking for added sound control but provide no visual
signifiers to indicate the location of control objects. This is
seen in the work of Trail et al. [21] in which they augment
a vibraphone with virtual faders that are controlled using
mallet tips tracked by a Kinect. Because there are no com-
puter generated signifiers, the fader locations are mapped
to the vibraphone keys to signify control locations. Inte-
grating XR in their system would have allowed the authors
to add a visual layer to enhance visual feedback.

We have previously explored the virtual hyperinstrument
concept by augmenting a physical theremin with virtual
objects to visualize the pitch space for music tutoring [22].
We extend that work with Hyperemin, a virtual augmented
theremin. OSC-XR controllers are added to the Hyper-
emin environment to provide real-time control of DSP of
the theremin audio. Audio from the theremin is routed to
a ChucK patch for playback and audio processing. An
OSC 3D Grid controller is added to the environment to
control the audio processing, allowing a performer to play



the theremin while also controlling audio processing pa-
rameters. Currently, the interaction requires a VR headset
and controllers, which may be intrusive to performance but
the addition of a LeapMotion sensor, or use of a HoloLens
with hand tracking, would address this. In addition to
adding sensors directly to the instrument, one of the af-
fordances of XR is the ability to place objects anywhere
in the space allowing users to create a customizable con-
trol interface not limited to pedals, small device displays
or other physical input controllers.

The Hyperemin environment explores the capabilities of
OSC-XR for augmenting physical instruments with virtual
objects. As XR technology improves we expect that aug-
menting more traditional instruments will become more
accessible. For example, with proper tracking technology
it would be possible to attach an OSC Gyro object to the
head of a violin and a set of pads to the body adding addi-
tional control without physical modifications.

5.3 Immersive Vis Control

OSC-XR was designed with music interfaces in mind but
its support for rapid prototyping makes it ideal for proto-
typing other types of immersive environments that require
parametric control and distributed communication. With
the emergence of XR technologies, there has been trend
of research towards immersive environments for informa-
tion visualization [23]. With this comes the need to rapidly
prototype interaction techniques to support the design of
immersive interfaces. In this case, we explore the process
of prototyping with OSC-XR to build immersive visual-
ization environment with sonic interaction and distributed
communication.

To explore interaction needs of immersive analytics envi-
ronments, we implemented a 3D visualization of the
GTZAN music genre dataset [24]. To visualize the high
dimensional data in 3D, 52 spectral and timbral features
of each song in the dataset are transformed into 3D coor-
dinates using T-SNE [25]. To visualize the data, we in-
tegrate OSC-XR with an immersive visualization toolkit,
DxR [26]. Using DxR we were able to quickly develop
an immersive scatterplot visualization of the T-SNE data.
While DxR provides a 3D interface for controlling the vi-
sualization, it is limited to basic point and touch based in-
teractions. Integrating OSC-XR into this environment al-
lows us to quickly prototype new interfaces and interac-
tions to control the visualization as well as augment it with
with additional functionality.

We prototyped a new interface to manipulate the DxR
generated visualization by augmenting the environment with
new control interfaces and interactions using OSC-XR ob-
jects. The interface is composed of two control panels, the
main panel is to manipulate the view of the visualization,
as shown in Fig. 3c, and a second panel controls the T-
SNE parameters, which was not previously possible using
DxR alone, shown in Fig. 3d. The main panel provides
users a set of sliders to directly manipulate view parame-
ters such as zoom and rotation. Since this panel affects the
visualization in real-time and would be frequently utilized
by a user during data analysis, it is oriented such that a user

is facing the visualization while interacting with the con-
troller. The T-SNE control panel, oriented to the left of the
user, allows users to to adjust T-SNE parameters and rerun
the data transformation on a Python server without having
to leave the virtual environment. We also take advantage
of OSC-XR capabilities to interact with the visualization
marks from a distance. Every mark in the visualization is
configured as an OSC Pointer Trigger providing users the
ability to interact with marks using the pointer from an in-
put controller. Using this interaction technique a user is
able to select any mark in the visualization to playback its
associated audio file allowing users to explore the data au-
rally, as we well as visually. Lastly, visualization marks
can be filtered using the pointer by select a genre mark
from the legend. Using OSC-XR controllers we have been
able to quickly prototype new methods for exploring and
interacting with an immersive visualization.

While Unity, DxR, and OSC-XR are all used to build
the immersive environment, other applications are needed
to support it. T-SNE is implemented in Python and au-
dio playback is implemented in ChucK. OSC communica-
tion affords us the ability to easily communicate between
the distributed applications. In addition, OSC-XR also al-
lows for communication within Unity by attaching OSC re-
ceiver methods to Unity GameObjects affording flexible
and extensible event handling. By using OSC-XR, we are
able to rapidly prototype an immersive environment with
complex needs, such as toolkit integration and distributed
communication.

6. CONCLUSION

We have introduced OSC-XR, a toolkit for prototyping im-
mersive musical environments. By providing developers
readily available controllers and scripts enabled with OSC,
OSC-XR reduces the need to build control objects from
scratch, making the development of immersive environ-
ments more accessible to researchers and developers. Com-
bined with the power of Unity for building 3D environ-
ments, developers using OSC-XR are able to easily explore
the affordances of immersive XR environments to find in-
teractions for music control that would not be possible with
other mediums.

The flexibility of OSC-XR creates many opportunities to
further research on immersive music environments. First,
we plan to implement features to spawn any controller pre-
fab from within an immersive environment. This provides
sound designers, with and without Unity development ex-
perience, the ability to build and customize immersive per-
formance environments on the fly. Furthermore, to allow
designers to take full advantage of the large amounts of
data potentially created by such an environment OSC-XR
would benefit from gesture learning capabilities, similar to
those of the Wekinator [27]. Adding these features to OSC-
XR will expand the possibilities of immersive performance
environments and make designing them more accessible.
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[9] N. Böttcher, S. Gelineck, L. Martinussen, and S. Ser-
afin, “Virtual reality instruments capable of changing
physical dimensions in real-time,” Proceedings of En-
active 2005, 2005.

[10] D. Diakopoulos and A. Kapur, “Argos: An Open
Source Application for Building Multi-Touch Musical
Interfaces,” in Proceedings of the 2010 International
Computer Music Conference, 2010, pp. 88–91.

[11] C. Roberts, “Control: Software for end-user interface
programming and interactive performance,” in Pro-
ceedings of the 2011 International Computer Music
Conference, 2011, pp. 425–428.

[12] R. Hamilton, “UDKOSC: An immersive musical en-
vironment,” in Proceedings of the 2011 International
Computer Music Conference, 2011, pp. 717–720.

[13] Y. Orlarey, D. Fober, and S. Letz, “Faust: an efficient
functional approach to dsp programming,” New Com-
putational Paradigms for Computer Music, vol. 290,
p. 14, 2009.

[14] P. Brinkmann, C. Mccormick, P. Kirn, M. Roth, and
R. Lawler, “Embedding Pure Data with libpd,” in Pro-
ceeding of the Fourth International Pure Data Conven-
tion, 2011, pp. 291–301.

[15] J. Atherton and G. Wang, “Chunity: Integrated Audio-
visual Programming in Unity,” in Proceedings of the
2018 Conference on New Interfaces for Musical Ex-
pression, 2018.

[16] Microsoft. (2019) Windows Mixed Reality. [On-
line]. Available: https://www.microsoft.com/en-ca/
windows/windows-mixed-reality

[17] SteamVR. (2019) SteamVR. [Online]. Available:
https://developer.valvesoftware.com/wiki/SteamVR

[18] VRTK. (2019) VRTK - Virtual Reality Toolkit.
[Online]. Available: https://vrtoolkit.readme.io/

[19] T. Machover and J. T. Chung, “Hyperinstruments: Mu-
sically intelligent and interactive performance and cre-
ativity systems,” in Proceedings of the 1989 Interna-
tional Computer Music Conference, 1989.

[20] D. Overholt, “The overtone violin,” in Proceedings of
the 2005 Conference on New Interfaces for Musical
Expression, 2005, pp. 34–37.

[21] S. Trail, M. Dean, G. Odowichuck, T. F. Tavares, P. F.
Driessen, W. A. Schloss, and G. Tzanetakis, “Non-
invasive sensing and gesture control for pitched per-
cussion hyper-instruments using the kinect,” in Pro-
ceedings of the 2012 Conference on New Interfaces for
Musical Expression, 2012.

[22] D. Johnson, I. Dufour, G. Tzanetakis, and D. Damien,
“Detecting pianist hand posture mistakes for virtual pi-
ano tutoring,” in Proceedings of the 2016 International
Computer Music Conference, 2016.

[23] T. Dwyer, K. Marriott, T. Isenberg, K. Klein, N. Riche,
F. Schreiber, W. Stuerzlinger, and B. H. Thomas, Im-
mersive Analytics: An Introduction. Cham: Springer
International Publishing, 2018, pp. 1–23.

[24] G. Tzanetakis and P. Cook, “Musical genre classifica-
tion of audio signals,” IEEE Transactions on Speech
and Audio Processing, vol. 10, no. 5, pp. 293–302, July
2002.

[25] L. van der Maaten and G. Hinton, “Visualizing Data
using t-SNE,” Journal of Machine Learning Research,
2008.

[26] R. Sicat, J. Li, J. Choi, M. Cordeil, W. Jeong, B. Bach,
and H. Pfister, “Dxr: A toolkit for building immersive
data visualizations,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 25, no. 1, pp. 715–
725, Jan 2019.

[27] R. Fiebrink, D. Trueman, and P. R. Cook, “A meta-
instrument for interactive, on-the-fly machine learn-
ing.” in Proceedings of the 2009 Conference on New
Interfaces for Musical Expression, 2009, pp. 280–285.

http://jaronlanier.com/instruments.html
https://www.microsoft.com/en-ca/windows/windows-mixed-reality
https://www.microsoft.com/en-ca/windows/windows-mixed-reality
https://developer.valvesoftware.com/wiki/SteamVR
https://vrtoolkit.readme.io/

	 1. Introduction
	 2. Related Work
	2.1 XR Music Interfaces
	2.2 OSC Controllers
	2.3 Audio Programming in XR

	 3. Unity OSC Library
	 4. OSC-XR
	4.1 OSC Controller Prefabs and Scripts
	4.2 Control Data Validation
	4.2.1 Slider and Pad Evaluation
	4.2.2 Discussion


	 5. OSC-XR Use Cases
	5.1 The Sonic Playground
	5.2 Virtual Hyperinstruments
	5.3 Immersive Vis Control

	 6. Conclusion
	 7. References

