MI-GEN-~: AN EFFICIENT AND ACCESSIBLE MASS-INTERACTION
SOUND SYNTHESIS TOOLBOX

James Leonard
Univ. Grenoble Alpes, CNRS, Grenoble IN P*
GIPSA-Lab, 38000 Grenoble, France
james.leonard@gipsa—-lab.fr

ABSTRACT

Physical modelling techniques are now an essential part
of digital sound synthesis, allowing for the creation of com-
plex timbres through the simulation of virtual matter and
expressive interaction with virtual vibrating bodies. How-
ever, placing these tools in the hands of the composer or
musician has historically posed challenges in terms of a)
the computational expense of most real-time physically
based synthesis methods, b) the difficulty of implementing
these methods into modular tools that allow for the intu-
itive design of virtual instruments, without expert physics
and/or computing knowledge, and c) the generally limited
access to such tools within popular software environments
for musical creation. To this end, a set of open-source tools
for designing and computing mass-interaction networks for
physically-based sound synthesis is presented. The audio
synthesis is performed within Max/MSP using the gen~
environment, allowing for simple model design, efficient
calculation of systems containing single-sample feedback
loops, as well as extensive real-time control of physical
parameters and model attributes. Through a series of bench-
mark examples, we exemplify various virtual instruments
and interaction designs.

1. INTRODUCTION

Over the last few decades, physically-based sound syn-
thesis methods have evolved from computationally expen-
sive & mostly non real-time techniques to one of the most
active fields in Computer Music, now widely employed
in digital sound synthesis, including in various commer-
cialised solutions. Alongside historic methods, such as
digital waveguides [1], modal synthesis [2] or lumped mass-
interaction modelling [3], recent trends show an increasing
number of methods rooted in mechanical and acoustical
simulation, such as finite-difference-time-domain systems
(FDTD) [4] or finite-element modelling [5]. Moreover,
scattering techniques can be used to connect wave-based
methods to Kirchhoff-based methods [6], enabling hybrid

*Institute of Engineering, Univ. Grenoble Alpes.

Copyright: © 2019 James Leonard et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Jerome Villeneuve
Univ. Grenoble Alpes, CNRS, Grenoble INP*
GIPSA-Lab, 38000 Grenoble, France
jerome.villeneuve@gipsa-lab. fr

modelling strategies and thus benefiting from the strengths
of each individual paradigm.

1.1 Tools for physical modelling sound-synthesis

Advances in physical modelling and simulation techniques
have, in most cases, been accompanied by the development
of frameworks and tools allowing the afferent concepts to
be manipulated. However, approaches differ significantly
depending on the end goal:

* A number of tools, such as the Synthesis Toolkit [7]
or Block Compiler [6] allow for expert users to de-
sign complex numerical simulations of musical in-
struments. They generally require a solid background
in both computing and physics, and as such are tar-
geted for the researcher or engineer rather than the
musician or composer.

* Other tools hide some of the inner complexity of
discrete-time physical models, offering more approach-
able concepts so that a composer or musician may
be able to assimilate and incorporate them into a cre-
ative process, with little prior scientific knowledge.
GENESIS [8] and MODALYS [2] are examples of
such systems.

1.2 Modularity considerations

Another distinction between tools for creation by means of
physical modelling is the degree of modularity that is made
available to the user:

* Non-modular systems such as model-based digital pi-
anos ' [9], the Brass project [10] or Physical Audio’s
reverb plate > present the user with a fixed physical
model to play, possibly allowing him/her to manip-
ulate physical parameters or chose between several
modes of excitation, etc.

* Semi-modular systems generally propose a base of
common physical structures (strings, plates, etc.)
available as primitives that can be assembled together
to create virtual objects [2, 11, 12].

* Entirely-modular systems such as GENESIS [8] al-
low the user to design virtual structures “from the
ground up” by assembling basic physical elements
(masses, springs, non-linear interactions).

! www.pianoteq.com

2 https://physicalaudio.co.uk/PA1

mailto:james.leonard@gipsa-lab.fr
mailto:jerome.villeneuve@gipsa-lab.fr
http://creativecommons.org/licenses/by/3.0/
https://www.pianoteq.com/
https://physicalaudio.co.uk/PA1

We note that as methods such as finite-difference time-
domain schemes evolve, offering evermore realistic synthe-
sised sound, the inherent complexity of such models renders
intuitive modification of the instruments difficult for non-
expert users; higher-level tools are generally limited to a
semi-modular approach [13] by connecting plates, strings
or bars through locally handled lumped interactions.

Systems aiming for a more fundamental, constructivist,
type of modularity must strike a compromise by leaning
on physical formulations that can be split into fundamental
“atomic” elements: such is the case of mass-interaction
physical modelling.

1.3 Modular physical modelling for artistic creation
1.3.1 (Unsupervised!) modelling

The study of mass-interaction modelling for musical cre-
ation is largely documented, essentially through work con-
ducted since the early 80’s at ACROE [3, 8]. One of the
key features of this approach - and an essential distinction
from most other physical modelling methods - is that virtual
physical objects can be designed intuitively (or empirically)
by assembling basic physical elements into a network.

In this case, “modelling” does not necessarily refer to
creating a virtual simulation that presents similar behaviour
to that of an existing physical instrument (see [14]); rather,
modelling is the activity of exploring virtual mechanical
constructions in order to discover behaviours and sounds
that are judged interesting (regardless of any criteria of
realism). Emphasis is consequently placed on providing
various tools for the construction, generation and analysis
of virtual physical networks in order to assist the composer
or musician during the design process [15, 16].

1.3.2 Towards open tools for mass-interaction modelling

Recent years show a regain of interest for modular and
more accessible physically-based synthesis methods such
as mass-interaction modelling, stimulated partly by the
possibilities of force-feedback interaction with such mod-
els [17,18].

Efforts have been made to provide accessible open-source
tools for environments such as Max/MSP. The HSP project
[19] presents masses and interactions directly as Max ob-
jects, that can be interconnected to form a network. How-
ever, the single sample delay (cf. Section 2) needed for the
position/force feedback loop imposes that Max runs with a
VectorSize of 1, hindering the performance of general audio
workflow in order to preserve the integrity and stability of
the discrete physical computation.

Synth-A-Modeler [20] is based on the Faust compiler > and
allows creating and compiling mass-interaction models (and
also hybrid models with waveguide and modal synthesis)
for a variety of targets (PureData, Max, standalone, etc.).
Compiled models are then available as black-box objects
that can be acted upon and observed through inlets and
outlets.

3 Recent work on the formalisation of mass-interaction networks in
FAUST was also conducted by the authors [21].

1.3.3 Presented work: mi-gen~

By leveraging the properties of the gen~ system, the work
presented in this paper allows for efficient implementation
of mass-interaction models within Max/MSP. These mod-
els can be generated using a dedicated scripting tool, or
coded directly within gen’s codebox object, leaving the
user free to modify them at any time. Large scale models
can be designed (with guaranteed single-sample loopback),
visualised, interacted with, and integrated into complex
workflows within Max.

First, we provide a brief introduction to algorithmic and
computational aspects of mass-interaction physical mod-
elling. Then, we present how such models can be coded
and computed with the mi-gen~ toolbox. Examples and
system performance are then discussed, with perspectives
for future work.

2. MASS-INTERACTION PHYSICAL
MODELLING BASICS

As the name suggests, mass-interaction models are com-
posed on the one side of mass-type elements, and on the
other interaction-type elements. The modularity of the for-
malism stems from the fact that the basic equations for
each are discretised individually, and can then be assem-
bled freely by following a small number of connection
rules [3,22,23]. The principles of mass-interaction mod-
elling can operate on position and force data of any spatial
dimension (scalar values, 2D or 3D vectors, etc.). The equa-
tions below and the implementation in this paper are 1D,
meaning that all masses move along a single axis.

A discrete-time implementation of a punctual mass is
obtained by applying the second order central difference
scheme to Newton’s second law (f is the force applied
to the mass, m is its inertia, a its acceleration, and x its
position):

f:ma:m@ (1)

Resulting in the following normalised form (with discrete-
time positions and forces noted X and F):

F
(m)

2
M)

With M, the discrete time inertial parameter defined as
M = m/AT? (where AT is the sampling interval).

As an example of a simple interaction element, the visco-
elastic force applied by a linear spring (with stiffness coeffi-
cient k, damping coefficient z and resting length of [, = 0)
connecting a mass m2 at the position zo to a mass m1 at
the position x; is given by:

Xnar) = 2X) = X1y +

d(.%‘g — 1‘1)
dt

Approximating the velocity by applying the backward
Euler difference scheme, we obtain:

3

fise = —k(za—21) — 2

Flny = = K(Xom) — Xi(n))
— Z((Xao(n) — X2m-1)))
— (Xitm) — Xi(n=1)))

loadmess 0.0008 | loadmess 0.00001
0.0008 0.00001

| | |

| J J

T =

| I
fails... loadbang m
Loacorg B
reset display_motion 1

> —

=
240 :
|

z -
run | & scale 0. 127. 0. 0.1

5 fretHeight

e e
clampSignals | clampSignals | clampSignals | clampSignals | clampSignals | clampSignals
e J'f‘_‘. 'r.r’r -
‘EE E

T
' '
2, o
p highpass~ | p highpass~

live.gain~
-

-15 dB
i "

I

D) LS

Figure 1. Screenshot of a Max patch implementing a string model. Control parameters are sent as messages to the gen~
patch, and external position and force inputs are provided as audio-rate signals.

With the discrete-time stiffness parameter K = k, and the
discrete-time damping parameter Z = z/AT. The result-
ing force is applied symmetrically to each mass (Newton’s
third law):

Finy— = Fw

&)
Famyt = Fin

Each interaction acting upon a mass effectively sums its
calculated force into a buffer, which equates (after weight-
ing by M) to the total acceleration applied to the mass dur-
ing this time-step. The computation of a mass-interaction
network consists in a closed-loop computation of the masses
and of the interactions. By convention, we will say that the
vibration of 1D topological structures occurs along the z-
axis.

3. THE MI-GEN~ LIBRARY

The mi-gen~ toolbox is an open-source Max package, avail-
able on GitHub* . It is composed of several documentation
and example patches, as well as a library of functions for
gen’s codebox object. Codebox is a textual coding environ-
ment within gen~ (based on a syntax similar to C), giving
access to all gen~ specific functions such as History, Delay,
Buffer/Data access, etc.

As in all gen~ patches, feedback paths with a single sam-
ple of delay are possible regardless of Max’s VectorSize,
which is crucial for implementing the closed loop calcu-
lations of equations (2) and (4) for all of the masses and
interactions in the physical model. Figure 1 shows a Max
patch centred around a “fretted string” gen~ physical model.

4https://github.com/mi-creative/mi-gen

3.1 Code structure

The sequence in Figure 2 shows the code structure of a
simple model: a harmonic oscillator (a mass, connected to
a fixed point by a dampened spring) that can be subjected
a force input via the first inlet of the codebox object, and
can be struck using a contact interaction (with stiffness,
damping and threshold distance parameters) by another
mass whose position is controlled by the second inlet.

3.1.1 Physical variables and initial states

Material points of the model (including “avatars” for exter-
nal position inputs) are stored as Data objects (equivalent
to an array of floating point 64-bit values). Each one is
composed of three values, corresponding respectively to the
point’s current position, previous position, and accumulated
force buffer. These attributes are set to initial conditions
during an initialisation phase. By convention, modules are
set with an initial position and velocity (inferred by the
previous position), and with null acceleration.

Interactions have no physical variables other than their
own parameters, since an interaction acts directly (and sym-
metrically) on the Data structures of the two masses that it
connects.

3.1.2 Computational loop

The simulation of the model’s dynamics is performed by
computing all of the mass-type algorithms then all of the
interaction type algorithms, for each time step (each audio
sample in our case). All of the physical algorithms are
implemented inside the migen-lib.genexpr file.

External position inputs are applied to the “avatar” mod-
ules during the mass-phase, and external force inputs are ap-
plied to corresponding masses during the interaction-phase.
Position and/or force values from “observed” masses are
collected at the end of the cycle and routed to outputs.

https://github.com/mi-creative/mi-gen

require ("migen—1ib”);

// Model data structures
Data m_in2(3);

Data gnd(3);

Data ml(3);

// Control Rate Parameters
Param Z(0.0001);

Param K(0.01);

Param M(1.) ;

History model_init(0);

// Model init phase

if (model_init == 0){
init_mat(m.in2, 1, 1);
init_mat(gnd, 0, 0);
init_mat(ml, 0, 0);
model_init = 1;

}

// Model computation
update_input_pos(m_.in2, in2);
compute_ground (gnd) ;

compute_mass (ml, M) ;
compute_contact(ml, m-in2, 0.1, 0, 0);
apply_input_force(ml, inl);
compute_spring_damper (ml, gnd, K, Z);

outl = get_pos(ml);

Figure 2. A simple mass-interaction model expressed in
genexpr code, using the mi-gen~ library.

3.1.3 Parameters of the physical algorithms

The physical parameters expressed inside mi-gen~ are nor-
malised discrete-time parameters as defined in Section 2.
On the one hand, this renders the behaviour of models de-
pendent on the sample rate for a given set of parameters,
on the other it provides a direct view of stability condi-
tions, defined at each mass as 4M > K + 27 (with M
the inertia of the mass, and K and Z the summed stiffness
and damping applied to this mass by interactions - see §7).
Translations to and from standard unit parameters can easily
be established allowing the user to manipulate either one.
Parameters may be:

* hard-coded values that are immutable once the patch
is compiled,

* control-rate parameters that can be dynamically mod-
ified by sending messages to the gen~ object,

¢ audio-rate parameters, added as signal inputs to the
codebox patch.

The latter is preferable for fast-varying parameters [24],
for instance in cases such as dynamically re-tuning the pitch
of a model according to input MIDI notes.

3.2 The MIMS scripting system

Although creating physical models directly in codebox is
fairly intuitive, designing larger scale objects is much easier

using higher level tools to describe the topology. MIMS °
(Mass-Interaction Model Scripter) is a basic editor written
in Python for this purpose, providing compilation into dsp
code for either gen~ or FAUST [21].

Models are described in a format similar to PNSL [16]:
each physical element is given a unique identifier, or label
(e.g. @massl), that can be referenced by other elements
(e.g. when connecting an interaction between two masses).
For instance:

@spr springDamper @m1 @m?2 0.1 0.001

creates a dampened spring connecting masses m/ and
m2 with a discrete-time stiffness of 0.1 and discrete-time
damping of 0.001. The inputs and outputs of the gen~ patch
are also based on labels:

@in1 frcInput @m1
@out2 posOutput @m?2

routes a force signal from the inlet in/ to the mass m2 and
routes an observation of m2’s position to the outlet out2.

Parameters also function as labels and can be used in
place of hard-coded values in the definition of any module’s
parameters as follows:

@M param 1.
@K param 0.01
@Z param 0.001

@cel osc MK Z 0. 0.1

The above code creates labelled inertia, stiffness and
damping control-rate parameters and then creates an in-
tegrated harmonic oscillator with these parameters, set at
initial position z = 0 with an initial velocity of 0.1 metres-
per-sample. Audio-rate parameter inputs are automatically
placed after any explicitly defined inputs for the patcher.

MIMS also provides rudimentary functions for automated
generation of larger scale topological structures, such as
strings, rectangular, triangular and hexagonal membranes.

4. REAL-TIME VISUALISATION
4.1 Visualising deformations using Motion Buffers

So far, we have only been able to observe points of a physi-
cal model that we route to outlets at the audio rate. However,
understanding the behaviour of a mass-interaction model
is greatly facilitated by visualising the deformations of the
entire object, even if we only “listen” to it in a few points.
This is achieved by creating motion buffers. Motion buffers
are simple MSP buffer~ objects, used a little unconvention-
ally: instead of storing a temporal waveform, the buffer
stores an instantaneous snapshot of the positions of a set of
masses. MIMS provides two uses for motion buffers:

* A 1-channel generic buffer, containing the motion of
all the mass-type elements in the model along the z
axis (in order of creation).

Shttps://github.com/mi-creative/MIMS

https://github.com/mi-creative/MIMS

Model Name H Nb. Masses Nb. Int. | Comp. Time. | CPU Load
1000 Mass String 1000 1002 00 -
Mesh (25x20) 506 965 3 min 67%
Mesh (15x15) 225 430 22's 15%
Fretted String 155 203 7.7s 8%
Bowed String 152 158 5.8s 7%
Plucked Harmonics 152 158 54s 6%
Drunk Triangles* 4 5 <ls ~ 16%

Table 1. Benchmarking: Number of masses and interactions, compilation time, and Max/MSP CPU load. Measurements
were made on a Dell Precision 5530 running Windows 10 & Max 7.3.5. Specs: Intel i7-8850H 4 cores at 2.6GHz, 16GB
RAM, 44.1kHz sampling rate, buffer size & vector size of 256 samples. * Drunk Triangles is a small model instantiated

dynamically with up to 100 voices, using poly~.

Figure 3. Vibratory deformations of a mesh attached at
each corner. Underlying physical model: 20x20 masses.
NURBS-based rendering in Jitter.

* Specific 3-channel buffers, containing the motion of
a set of mass-type elements in the model along the z
axis, as well as fixed x and y coordinates. Masses are
added to buffers by adding the buffer name and extra
x-y coordinates after the standard module parameters.

The former allows quick visualisation of the model state
by drawing the motion buffer with the plot~ object. The
latter is useful for creating visual arrangements that corre-
spond to the topological nature of a mass-interaction net-
work, e.g. grid-based distributions along x and y according
to generated mesh patterns, which allows to represent modal
deformations and wave propagation along the matter.

Inside the gen~ patch, the motion buffers are refreshed
with new positions once every 200 audio steps (a rate of
220.5 Hz for a sampling rate of 44.1kHz). This limits the
computational costs of writing the data, as it is only used
for visualisation purposes.

4.2 Rendering techniques

Within Max, Jitter offers powerful tools for visual render-
ing, including surface rendering algorithms such as Non-
Uniform, Rational, B splines (NURBS). This technique is
used to render smooth curves and surfaces from a limited
number of control points (in our case, the x-y-z positions
of the masses of a physical model). Using specific motion
buffers as discussed above, simple model topologies such
as strings and rectangular membranes can be rendered as
shown in Figure 3.

5. BENCHMARKING & EXPERIMENTATION

The mi-gen~ toolbox provides a set of tutorial and exam-
ple patches ®, showing a hands-on approach to designing
models and control/interaction strategies within Max/MSP.

5.1 Performance benchmark

Table 1 shows the results of a selection of models (mostly
examples from the toolbox), in terms of complexity, compile-
time of the gen patcher, and CPU usage within Max.

Results show that the main limitation for large scale mod-
els stems from the gen compilation phase: models with
approx. 650 modules take over 20 seconds to compile, but
only occupy around 15 % of the CPU when running. The
load displayed by the Max/MSP monitor is reasonable for
all models that pass the compilation phase, and shows no
noticeable difference whether the visualisation of motion
data is active or not.

Beyond a certain volume of codebox code, the compilation
of the patch hangs (cf. the 1000 Mass String in Table 1).
Reasons for this limitation will be investigated. It is worth
noting that the authors experienced similar issues with the
Faust compiler [21].

Performance of complex models can be optimised by
means of dynamically allocated voices using the poly~ sys-
tem, as is the case in the Drunk Triangles example, which
contains up to 100 instances of a simple mass dropping
and bouncing on a “triangle” resonator (shown in Figure
4). Each instance is tuned according to a pseudo random
sequence generated with Max’s drunk object, and frees
its voice when it detects that the mass has stopped bounc-
ing. Figure 5 shows a visual representation of the entire
instrument.

Figure 4. Schematic representation of the Drunk Triangles
model.

6 Video demonstrations are provided at: mi-creative.eu/tool_migen.html

http://www.mi-creative.eu/tool_migen.html

Figure 5. Visual representation of the Drunk Triangles
polyphonic instrument: bouncing masses in red, resonating
structures in blue.

5.2 The fretted string model

Plucked or struck string instruments have long been a topic
of interest in physical modelling, from the acoustical prop-
erties of the string itself [25] to the non-linear collisions
[26,27] that occur in fretted instruments. Below we present
a simple mass-interaction implementation of such a model.

5.2.1 Fretting mechanisms in 1D space

Previous work by the authors [28] presented fretted string
mass-interaction models with an analogy to the guitar fret-
board, where certain string masses are pinned down against
fixed points, set underneath them. However, this poses prob-
lems since, unlike in real life where fretting gestures are
orthogonal to strumming ones, in the 1D virtual model the
string is excited in the same axis as the fretting gesture. This
forces frets to be placed very low and distributed unevenly
beneath the string in order to avoid fret buzz.

A more functional analogy in our case comes from the
tuning forks found on concert harps. When rotated by oper-
ating the instrument’s pedals, they apply pressure in both
directions simultaneously, pinning the string without caus-
ing excess displacement. Within Max, it is straightforward
to setup two opposite position signals that operate the tuning
fork “clamp”, and to replicate the mechanism in as many
points as desired.

5.2.2 Model description and behaviour

The vibrating model is a simple string attached between
two fixed points. An external force input triggers a mass
that moves downwards and collides with the string. Multi-
ple external position inputs control seven frets (or clamps),
positioned at intervals corresponding to the diatonic scale.
The height of the frets and the speed of the clamping mech-
anisms can be modified in real-time: we can choose to
completely avoid any fret-buzz, or dial in just enough for
things to sound lively and interesting... or even go crazy
with extremely rattly down-tuned strings! The Max patch

is shown in Figure 1.

;§_®

Figure 6. Schematic representation of the fretted string
model (clamping mechanisms on the left side).

5.2.3 “Physical Interaction” Realism

Once again, we stress that the created model does not strive
for any true acoustical realism: indeed, the string’s masses
are limited to transverse motion, it is modelled with lin-
ear springs, has no vibrating body, the discrete number of
masses imposes slightly off-key fret positions... the list
goes on. However, even in this extremely reductive model,
careful physical interaction design brings forth perceptually
important emergent non-linear behaviour, inferring charac-
ter and unpredictability to the instrument.

We could say that the mass-interaction paradigm yields
physical interaction realism, in the sense that it faithfully
represents anything that can be represented with Newtonian
point-based mechanics, and that any path the user chooses
to follow from there on - be it searching to reproduce real-
life phenomena or exploring the unknown - is entirely up to
him.

6. DISCUSSION

This paper has presented mi-gen~, a new library and set of
tools for mass-interaction physical modelling sound synthe-
sis in Max/MSP. In comparison to existing tools, it offers
efficient computation entirely within Max, without precom-
piling the models into static black boxes. This allows for
on-the-fly iterative model design, direct access to physical
parameters and to the model state (which can be visualised
using any method seen fit) and - maybe most importantly
- it empowers the user by providing a hands-on program-
ming framework for 1D mass-interaction physics, with vast
possibilities for customisation. As such, it constitutes a new
experimentation ground for combining mass-interaction
physics with the immense panoply of signal-based tools
available inside of Max, for any sound synthesis, transfor-
mation or analysis purpose.

An immediate perspective of this work is integration with
affordable force feedback systems (such as the FireFader
or the Haply 7 device). A more fundamental perspective
for musical creation is considering sound synthesis with
3D mass-interaction models, as modelling virtual objects
with spatial attributes naturally addresses many of the limi-
tations of 1D modelling, in particular regarding non-linear
dynamics.

It is our hope that this work will constitute another step
towards opening mass-interaction modelling to a larger
spectrum of users, in the Computer Music community and
beyond. Despite the apparent simplicity of the formalism,
we are convinced that much has still to be said, discovered,
and experimented.

7. APPENDIX: STABILITY CONDITIONS FOR
THE HARMONIC OSCILLATOR

Following equations (2) and (4), the discrete time recur-
rence of the linear harmonic oscillator composed of a mass,
dampened spring and a fixed point can be expressed (in the
absence of external forces other than the spring) as:

Thttp://haply.co

http://haply.co

Xnsn) + (%—2) .X(n)+(1—%).X(n,1) —0 (6)

The associated characteristic polynomial is:

r?+Ar+B =0 (7)
with A = (% 72> and B = (1 — %), giving the
discriminant A = A% — 4B.
7.1 Case 1: Oscillating conditions (A < 0)

If A < 0 equation (7) possesses complex roots and gives an
oscillating solution. We can therefore express the physical
parameters that bound oscillating solutions as:

(2 (D)o w

Which can be developed into:

(K +2)> <4AKM 9)

The pseudo-periodic resulting oscillator is of the form:

Xn) = xp"cos(nw, + ¢) (10)
With p = \/E and w, = arccos (— %). Oscillations
converge towards O for 0 < % < 1 and are divergent

otherwise.

7.2 Case 2: Non-oscillating conditions (A > 0)

A = 0 leads to a single real root and a solution of the form:

X(n) = (« +ﬂn)< — g)" an

This condition equates to critical damping in the oscillator:

Z=2VKM - K (12)

This solution converges if |1 — 1/%\ < 1, resulting in the
following stability limits:

K
0< ‘/jj <2 (13)

If A > 0, equation (7) has two real roots r; and 75 and
the solution is of the form:

Xy =a(r)" + B(r2)" (14)
with roots: /A
—A+ VA

Me= (15)

X (n) converges towards zero if [r1| < 1 and [ro| < 1.

Taking |%| < 1 we can express two inequalities:

VA<2-A

16
VA <2+ A (16)

Which after developing A and squaring the inequalities
(assuming 0 < K+ Z < 4M so that both sides are positive)
results in:

A-B<l1
A+ B> -1

Leading to the final stability conditions as functions of M,
K and Z:

a7

o
M (18)

K+27 <4M

7.3 Final stability conditions

The stability conditions and regimes for our mass-interaction
harmonic oscillator are given in Figure 7. The oscillator
is numerically stable if the stiffness, damping and mass
parameters verify:

K+27 <4M
K/M >0

Additionally the system will be in an oscillatory regime if
the same parameters verify:

(K + Z)> < AKM

0<Z/M <1
2
N2
numerical
overdamped divergence
regime
1 critical damping
0 B
e =
4 \\\
£ N
/ \\\
[~o
S~
>
0 1 2 3 4
K/M

Figure 7. Stability conditions for the harmonic oscillator.

Generally speaking, the static regime stability condition
for a mass connected to any number of linear springs and/or
dampers can be expressed by analysing the harmonic oscil-
lator with Ko = > K and Zg =) Z.

8. REFERENCES

[1] J. O. Smith, “Physical modeling using digital waveg-
uides,” Computer Music Journal, vol. 16, no. 4, pp.
74-91, Winter 1992.

[2] J.-M. Adrien, “The missing link: Modal synthesis,” in
Representations of musical signals. MIT Press, 1991,
pp. 269-298.

[3] C. Cadoz, A. Luciani, and J. L. Florens, “Cordis-anima:
a modeling and simulation system for sound and im-
age synthesis: the general formalism,” Computer music
Jjournal, vol. 17, no. 1, pp. 19-29, 1993.

(4]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

S. Bilbao, Numerical Sound Synthesis: Finite Differ-
ence Schemes and Simulation in Musical Acoustics.
Chichester, UK: John Wiley and Sons, 2009.

R. Panneton and N. Atalla, “An efficient finite element
scheme for solving the three-dimensional poroelasticity
problem in acoustics,” The Journal of the Acoustical
Society of America, vol. 101, no. 6, pp. 3287-3298,
1997.

R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis,
C. Erkut, and M. Karjalainen, “Blocked-based physi-
cal modeling for digital sound synthesis,” IEEE Signal
Processing Magazine, vol. 24, no. 2, pp. 42-54, 2007.

P. Cook and G. Scavone, “The Synthesis Toolkit (stk),”
in Proceedings of the International Computer Music
Conference (ICMC-99), Beijing, China, 1999.

N. Castagné and C. Cadoz, “Genesis: a friendly
musician-oriented environment for mass-interaction
physical modeling,” in ICMC 2002-International Com-
puter Music Conference. MPublishing, 2002, pp. 330-
337.

B. Bank and J. Chabassier, “Model-based digital pi-
anos: from physics to sound synthesis,” IEEE Signal
Processing Magazine, 2018.

C. Vergez and P. Tisserand, “The brass project, from
physical models to virtual musical instruments: Playa-
bility issues,” in International Symposium on Computer
Music Modeling and Retrieval. Springer, 2005, pp.
24-33.

S. Bilbao, “A modular percussion synthesis environ-
ment,” in Proc. of the 12th Int. Conference on Digital
Audio Effects (DAFx-09), 2009.

S. Bilbao, A. Torin, P. Graham, J. Perry, and G. Delap,
“Modular physical modeling synthesis environments on
gpu,” in ICMC, 2014.

C. J. Webb and S. Bilbao, “On the limits of real-time
physical modelling synthesis with a modular environ-
ment,” in Proceedings of the International Conference
on Digital Audio Effects, 2015, p. 65.

V. Vilimiki and T. Takala, “Virtual musical instruments.
natural sound using physical models,” Organised Sound,
vol. 1, no. 2, pp. 75-86, 1996.

J. Villeneuve, C. Cadoz, and N. Castagné, “Visual rep-
resentation in genesis as a tool for physical modeling,
sound synthesis and musical composition,” in New Inter-
faces for Musical Expression 2015, 2015, pp. 195-200.

J. Villeneuve and C. Cadoz, “Understanding and tuning
mass-interaction networks through their modal repre-
sentation,” in 40th International Computer Music Con-
ference/l Ith Sound and Music Computing Conference,
2014, pp. 1490-1496.

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

E. Berdahl, “An introduction to the Synth-A-Modeler
compiler: Modular and open-source sound synthesis
using physical models,” in Proceedings of the Linux
Audio Conference (LAC-12), Stanford, USA, May 2012.

J. Leonard, N. Castagné, C. Cadoz, and A. Luciani,
The MSCI Platform: A Framework for the Design and
Simulation of Multisensory Virtual Musical Instruments.
Cham: Springer International Publishing, 2018, pp. 151-
169.

D. Overholt, A. Kontogeorgakopoulos, and E. Berdahl,
“Hsp v2: Haptic signal processing with extensions for
physical modeling,” Haptic Audio and Interaction De-
sign 2010 Program and Papers, pp. 61-62, 2010.

E. Berdahl and A. Kontogeorgakopoulos, “The fire-
fader: Simple, open-source, and reconfigurable haptic
force feedback for musicians,” Computer Music Jour-
nal, vol. 37, no. 1, pp. 23-34, 2013.

J. Leonard, J. Villeneuve, R. Michon, S. Letz, and Y. Or-
larey, “Formalizing mass-interaction physical modeling
in FAUST,” in Linux Audio Conference (LAC’19). Stan-
ford University, USA, 2019.

E. Incerti and C. Cadoz, “Modélisations et simula-
tions de structures vibrantes en CORDIS. Matériaux
et parametres pour la création musicale,” in Deuxiémes
Journées d’Informatique musicale, Paris, France, 1995,
pp. 173-183.

A. Kontogeorgakopoulos and C. Cadoz, “Cordis anima
physical modeling and simulation system analysis,” in
4th Sound and Music Computing Conference 2007. Na-
tional and Kapodistrian University of Athens, 2007, pp.
275-282.

E. Berdahl, “Audio-rate modulation of physical model
parameters,” in ICMC, 2014.

T. Tolonen, V. Valimaki, and M. Karjalainen, “Modeling
of tension modulation nonlinearity in plucked strings,”
IEEE Transactions on Speech and Audio Processing,
vol. 8, no. 3, pp. 300-310, 2000.

S. Bilbao, A. Torin, and V. Chatziioannou, “Numerical
modeling of collisions in musical instruments,” Acta
Acustica united with Acustica, vol. 101, no. 1, pp. 155-
173, 2015.

G. Evangelista and F. Eckerholm, “Player—instrument
interaction models for digital waveguide synthesis of
guitar: Touch and collisions,” IEEE transactions on
audio, speech, and language processing, vol. 18, no. 4,
pp. 822-832, 2010.

J. Leonard and C. Cadoz, “Physical modelling con-
cepts for a collection of multisensory virtual musical
instruments,” in Proceedings of the Conference on New
Interfaces for Musical (NIME15), Baton Rouge, USA,
May 2015.

	 1. Introduction
	1.1 Tools for physical modelling sound-synthesis
	1.2 Modularity considerations
	1.3 Modular physical modelling for artistic creation
	1.3.1 (Unsupervised!) modelling
	1.3.2 Towards open tools for mass-interaction modelling
	1.3.3 Presented work: mi-gen

	 2. Mass-Interaction Physical Modelling Basics
	 3. The mi-gen library
	3.1 Code structure
	3.1.1 Physical variables and initial states
	3.1.2 Computational loop
	3.1.3 Parameters of the physical algorithms

	3.2 The MIMS scripting system

	 4. Real-time visualisation
	4.1 Visualising deformations using Motion Buffers
	4.2 Rendering techniques

	 5. Benchmarking & experimentation
	5.1 Performance benchmark
	5.2 The fretted string model
	5.2.1 Fretting mechanisms in 1D space
	5.2.2 Model description and behaviour
	5.2.3 ``Physical Interaction'' Realism

	 6. DISCUSSION
	 7. Appendix: Stability Conditions For The Harmonic Oscillator
	7.1 Case 1: Oscillating conditions (< 0)
	7.2 Case 2: Non-oscillating conditions (0)
	7.3 Final stability conditions

	 8. References

