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ABSTRACT

Anticipating a human musician’s tempo for a given piece 
of music using a predictable model is important for inter-
active music applications, but existing studies base such an 
anticipation based on hand-crafted features. Based on re-
cent trends in using deep learning for music performance 
rendering, we present an online method for multi-step pre-
diction of the tempo curve, given the past history of tempo 
curves and the music score that the user is playing. We 
present a linear autoregressive model whose parameters are 
determined by a deep convolutional neural network whose 
input is the music score and the history of tempo curve; 
such an architecture allows the machine to acquire a mu-
sic performance idioms based on musical contexts, while 
being able to predict the timing based on the user’s play-
ing. Evaluations show that our model is capable of improv-
ing the tempo estimate over a commonly-used baseline for 
tempo prediction by 18%.

1. INTRODUCTION

When multiple musicians play in a music ensemble for 
the first time, each player responds to one another by lis-
tening to each other and anticipating each others’ timing. 
Realizing this kind of on-the-fly online timing prediction 
for machines is important for interactive computer systems 
such as automatic accompaniment systems, since the sys-
tem needs to respond in real-time in spite of the delays in 
computer systems and/or mechanical actuators, which can 
be on the order of hundreds of milliseconds [1].

In this kind of problem setting, key requirements are (1) 
awareness to the common musical idioms associated with 
a particular music score, (2) awareness to how the human 
performer has executed the playing, and (3) interpretabil-
ity of the system behavior. Awareness to the music score is 
important because the music score and expressive parame-
ters are highly correlated [2]. For example, musicians of-
ten slow down before the end of the song. Awareness to the 
actual performance by the human musician is also impor-
tant because, as much as the music score provides strong 
cues on musical idioms, it is the performer who ultimately 
chooses to abide by or defy it. Interpretability is important
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because it allows musicians to anticipate how the system
will respond to their playing.

Recently, it was shown in the analysis of duet interaction
[3] that using hand-crafted features from the music score
and the performance helps in timing prediction, as opposed
to using the performance features alone. However, it uses
simple hand-crafted features from the music score, poten-
tially limiting the kind of information captured from the
music score. To bypass design of handcrafted features, in
a different problem of music performance rendering, deep
learning has shown promise for acquiring features that are
relevant for the prediction of note strengths [4].

Inspired by these works, this paper presents a tempo pre-
diction method that takes into account both the music per-
formance context and the surrounding music score context,
and learns the feature representation in a data-driven man-
ner 1 . This is achieved by training a linear autoregressive
(AR) model of the tempo, whose coefficients are gener-
ated from a deep neural network (DNN) that takes both the
performance history and musical context as the inputs.

Our contributions are as follows:

1. We propose deep linear AR model, a linear AR model
whose coefficients are modeled with a DNN.

2. We apply the deep linear AR model for human tempo
prediction, allowing online tempo prediction that is
both music performance-aware and music context-
aware.

3. We evaluate our model, comparing it with other commonly-
used baseline methods for human tempo prediction
in interactive music systems and show that DNN-
based feature extraction surpasses hand-crafted fea-
tures. Furthermore, through application of perfor-
mance rendering, we shed light on the kind of musi-
cal context the system learns to acquire through the
DNN.

Audio examples of the inferences made by our method is
available at https://sites.google.com/view/
deep-linear-ar-for-tempo/.

2. RELATED WORK

2.1 Automatic accompaniment

Predicting the human player’s tempo is a critical compo-
nent in automatic accompaniment systems [5–8]. To tune

1 In this paper, we use the word “tempo” interchangably with the beat
duration.
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the prediction to a particular performer that plays a partic-
ular piece, such a system often learns a model of tempo
curve from multiple rehearsals. Timing prediction through
rehearsals, however, is agnostic to musical contexts, so it
is not possible to predict the expressive timing on a piece
that has never been rehearsed before. While it is possible
to use tempo markings written in the music score [9], but
it is often cumbersome to prepare such an annotation. This
paper is concerned with enabling the machine to anticipate
expressive timing on a piece that has not been played be-
fore, or to respond to spontaneous musical ideas for pieces
that have been rehearsed.

2.2 Music performance rendering

Music performance rendering method generates a human-
like tempo curve, given a previously unseen music score
[10, 11]. It is critical in this task to extract features from
the music score that are relevant to music performance, a
reign in which deep learning has shown promise, particu-
larly for predicting note strengths [4] and timings [12]. Un-
fortunately, predicting and responding to live human per-
formance is outside the scope of the problem definition.
This paper is concerned with using an external tempo curve
played by a human musician to predict the tempo curve,
using a model that is amenable to online inference.

2.3 Duet interaction

Duet interaction [3], the task of predicting the machine re-
sponse given a human playing in a human-machine en-
semble, exploits the music score to improve the quality
of timing and dynamics prediction with a few number of
rehearsals. A limitation is that the method requires hand-
crafted features from the music score. This paper is con-
cerned with using the idea of duet interaction for human
timing prediction.

2.4 Deep non-linear AR models

Recently, deep neural networks have been applied to se-
quence prediction tasks, where non-linear AR model [13]
has shown success. However, its behavior is often difficult
to predict ahead of time. In real-time systems like auto-
matic accompaniment, it is desirable for the system to ex-
hibit a known dynamics ahead of time, using models like
linear autoregressive models [5] for which stability and
sensitivity is easy to analyze. This paper is concerned with
generating a mathematical model based on linear autore-
gressive process, so that the behavior of the system for a
given piece of music can be anticipated beforehand, while
enjoying the high-level feature design that deep learning
offers.

3. OUR METHOD

The goal of our method is to predict the tempo curve of
a musician who plays a new piece of music score, as if a
group of musicians are anticipating each other’s timing for
a piece that they play for the first time. We require multi-
step predictions: at a given time instance when the user
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Figure 1: Overview of our method. Our method, given
the music score and the history of beat duration, predicts
the successive durations. It uses a DNN that generates AR
model coefficients to predict the beat duration from past
beat durations.

is playing some position n in the music score, we predict
the tempo at n plus p eighth notes, ranging from p = 1 to
p = P . This way, it is possible to predict the future play-
ing position for various interactive systems with different
latencies.

As shown in Figure 1, the music score is assumed to be
segmented at an eighth-note level, where the nth segment
is associated with a segment duration τn. When the player
has just finished playing the nth segment, our goal is to
predict the future segment durations, τn+1 to τn+P , given
the music score and the segment durations played by the
player up to now, {τn′}n′≤n.

Our method predicts the timing with an AR model of or-
der I . The AR coefficients are determined by two inputs.
First, since it is autoregressive, it uses the segment duration
history of the current performance, {τn′}n′≤n. Second,
since the music score and the tempo are highly correlated,
it uses the music score information around the current seg-
ment n, which we denote by Sn. It contains (1) the notes
written in the score, i.e., the pitches, the start times and the
durations, and (2) metric information, i.e., the meter and
the relative position inside the measure.

3.1 Deep linear AR model for timing prediction

We formulate the timing prediction as a multi-step predic-
tion problem. Suppose that the performer has played just
up to segment n. We assume that the expected segment
duration τn+p (p > 0) depends only on the performance
history τn′≤n and the music score Sn. Furthermore, we as-
sume that the residual follows a zero-mean Laplacian noise
with scale λ. We assume Laplacian noise because it is tol-
erant to outliers of the IOI. Then, based on the assumptions
described later in Section 3.1.1, we can formulate timing
prediction as a maximum likelihood estimation of the fol-
lowing probabilistic model:

τn+p|Θ, Sn, τn ∼ L
( I−1∑

i=0

ap,i(Sn, τn; Θ)τn−i, λ
)
, (1)



Music score 

feature

Leaky ReLU

Batch Norm.

Performance 

feature

Linear AR coefficients
(1 to P-step prediction)

x P

Fully Connected

Fully Connected

Figure 2: The prediction coefficient function. It is a NN
that, given the music score feature and the performance
feature, generates the AR model parameters of order I , for
up to P -step prediction.

where L(µ, λ) is a Laplace distribution with the po-
sition parameter µ and the scale parameter λ, Θ de-
notes a set of arbitrary model parameters, and τn =
[τn−I+1 · · · τn]. Our goal is to design the non-linear func-
tion ap,i(Sn, τn; Θ), which we call the prediction coeffi-
cient function, and to learn its model parameters Θ.

We represent the prediction coefficient function ap,i as a
neural network composed of two fully-connected layers as
shown in Figure 2. The number of neurons for the hidden
layers is 300 and the number of output neurons is P × I . It
uses leaky rectified linear units (ReLU) for the activation
function and each layer is batch-normalized [14].

The inputs to the network are low-dimensional feature
representations of the music score Sn and the performance
τn. We denote these features respectively by un and vn
and call them the music score feature and performance
feature respectively.

3.1.1 Derivation of the deep linear AR model

We assume that at segment n, only the previous I coeffi-
cients contribute to the estimate of τn′>n. Then, we model
τn+p as the following non-linear AR process:

τn+p = fp(Sn, {τn′}n′≤n; Θ)+εn,p; εn,p ∼ L(0, λ). (2)

To make the model’s behavior more predictable, which is
beneficial for real-time interactive music applications, fp
is approximated by a first-order Taylor expansion with re-
spect to τ to yield the following:

τn+p ≈ τT
n (∇τfp(Sn, τ ; Θ)|τ=0

+H(Sn, τn; Θ)) + εn,p, (3)

where H is the higher-order term left-divided by τT
n , and

we assumed that the constant term is zero 2 . Thus, we ar-
rive at Equation 1, where ap,i = (∇τfp(Sn, τ ; Θ)|τ=0 +
H(Sn, τn; Θ))i.

2 Incorporating the constant term yielded in poor results in preliminary
experiments.

3.1.2 Relationship with linear AR and deep non-linear
AR models

Our model is a compromise between a linear AR model
used in automatic accompaniment systems [5] and a deep
non-linear AR model used in areas like speech generation
[13]. It is a linear AR process, whose model parameters
are governed by a non-linear function a(·).

Our modeling approximation is inspired by the success of
shortcut connections in deep learning [15, 16]: our model
can be thought of as having a multiplicative shortcut con-
nection from the input τn to the output, so that the output
gradient is able to fully exploit the input.

3.2 DNN for feature extraction

For computing the music score feature un, we extract the
following attributes from the music score Sn:

1. φ(1)n ∈ {0, 1}12: Denotes the downbeat phase; it
is a one-hot vector that indicates, at segment n, the
number of segments that have elapsed since the last
downbeat.

2. φ(2)n ∈ {0, 1}12: Denotes the meter; it is a one-hot
representation of the meter at the current measure,
expressed as the number of segments inside a mea-
sure, with the longest meter of 12/8.

3. φ(3)n ∈ {0, 1}128×20: Denotes the notated notes; it is
a binary piano-roll representation of the music score
between segment n − 2 and n + 2; the piano-roll is
quantized at 32nd-note level, and the pitch is repre-
sented as MIDI note number between 0 and 127.

Given these data, we extract the music score feature us-
ing a DNN shown in Figure 3. Namely, φ(1) and φ(2)

are concatenated and passed through a fully-connected
layer to obtain an intermediate feature φ(m). φ(3) is
passed through three convolutional layers followed by a
fully-connected layer to obtain another intermediate fea-
ture φ(p). We use leaky ReLU for activation, followed by
batch-normalization and max-pooling. The convolutional
layers and max-pooling layers are designed so that the net-
work becomes (1) sensitive to particular harmonic progres-
sions or note patterns, (2) sensitive to position in the score,
and (3) relatively invariant to transposition. Specifically,
for the first layer, we attempt to capture interval relation-
ship by using kernel size of twelve semitones by two 32nd
notes. Furthermore, to achieve invariance on transposition
while remaining sensitive to the temporal positions, max-
pooling is done only on the pitch axis, spanning four semi-
tones. To obtain the music score feature un, we concate-
nate these intermediate features from the current measure
and W neighboring segments, {φ(m)

n′ , φ
(p)
n′ }n+W

n′=n−W . By
evaluating from n−W up to n+W , we incorporate both
prior and upcoming contexts, both of which are relevant
for musical expression [17].

For the performance feature vn, we use τn, normaliz-
ing it to have zero mean and unit variance. Thus, at the
expense of ignoring the dependency of average tempo on
tempo expression [18], it expresses the local trend of the
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Figure 3: DNN for music score feature extraction.

tempo change, while being invariant under the change of
the average tempo at segment n.

3.3 Training

In our method, we train the parameters related to DNN for
music score feature extraction, and the parameters related
to the prediction coefficient function ap.i(un, vn; Θ). We
train the parameters as to maximize the likelihood of the
ground-truth segment duration, which amounts to mini-
mizing the l1 loss with respect all the parameters, accumu-
lated over all the songs in the training data. Specifically,
for each song in the training data, the loss is given as fol-
lows, where N is the number of segments in the song, τ̂n
is the ground-truth segment duration, and Ŝ is the music
score:

N∑
n=I

P∑
p=1

|τ̂n+p −
I−1∑
i=0

ap,i(un(Ŝ), vn(τ̂n))τ̂n−i|. (4)

3.3.1 Data augmentation strategies

Since the segment duration is expected to be invariant un-
der transposition, we augment the data by randomly shift-
ing the piano-roll φ(3) by -5 to +5 semitones. Further-
more, we simulate the motor noise of a human musician,
inspired by models of sensorimotor synchronization [19];
we add to τn a correlated Gaussian noise en, given as
en = εn − εn−1 where εn is a white noise with a stan-
dard deviation of 10 ms. Time-stretching, a common data-

augmentation strategy for audio [20], was not used, be-
cause our model is invariant under change of the average
tempo in a piece.

4. EVALUATION

To evaluate our method, we conducted three experiments.
First, we evaluated the effectiveness of incorporating the
music score and the performance history for tempo predic-
tion. Second, we conducted an ablation study for assess-
ing the effect of using a deep convolutional neural network
for music score feature extraction. Third, we qualitatively
analyzed the typical predictions made by our model, by
applying our model for tempo curve generation.

In the subsequence experiments, we let P = 8, I = 24,
and W = 24. To train the model, we used ADAM [21]
for seven epochs with a batch-size of 128, with the same
hyper-parameters used in [21]. We directly minimized the
loss function, with no pre-training.

4.1 Dataset

We evaluated our method on 52 virtuoso solo pieces played
by different people, mostly pieces from the Romantic era
such as Chopin, Liszt, Schubert, and virtuosic Beethoven
piano sonatas 3 . The pieces were chosen because they of-
ten contain extreme tempo fluctuations, owing to the high
freedom allowed in playing.

First, for each piece, a digital music score was prepared
as a standard MIDI file. Second, performance data for
each piece was obtained from Yamaha e-Piano competi-
tion, which contains performances by different performers
on a Yamaha Disklavier player piano to record the MIDI
performance data (up to sixteen interpretations per piece).
We obtained a total of 250 MIDI performance data. Fi-
nally, for each MIDI performance data, the ground-truth
segment durations and the music score were obtained by
aligning it to the corresponding music score MIDI data.
The alignment was obtained by using a symbolic align-
ment method, followed by a manual inspection by a trained
musician.

Of the 52 pieces, we used 47 pieces for training and 5
for testing, using ten-fold cross validation (about 712,000
training samples).

4.2 Evaluation of the prediction method

In this experiment, we evaluated the effectiveness of using
the performance feature and the music score feature. To
this end, we have evaluated the prediction error of multi-
step prediction. Specifically, for each prediction step p, we
computed the mean absolute error of the predicted duration
between the current segment n and segment n+ p, and the
actual duration. We have evaluated the prediction errors
using the following methods:

1. Condition MA: τn+p is predicted as a moving aver-
age of τn−I to τn−1, similar to [22].

3 A full list of the repertoire is available at the web page mentioned in
the introduction.
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Figure 4: Mean absolute error of multi-step prediction with
different baselines. Differences are statistically signifi-
cant for all pairs of the baseline and the proposed method
(Kruskal-Wallis Test applied pairwise, p < 0.01).

2. Condition AR: τn+p is predicted with a single AR(I)
model, similar to [5].

3. Condition LR(HC) (HC=Hand-Crafted): τn+p is
predicted with linear regression, using as the input
variables the timing history and hand-crafted fea-
tures used in duet interaction. Specifically, the hand-
crafted features consists of the segment durations,
the beat phase and the coefficients to the quadratic
regression of the highest and lowest notes. This con-
dition amounts to a simplified model of duet inter-
action [3], where the player’s performance is used to
predict his own timing. To make a fair comparison
on music score feature extraction, we omit features
that are not obtainable from the music score and the
beat duration history, such as the note strengths.

4. Condition LR(DNN-M): Same as LR(HC), except
instead of hand-crafted features, the DNN-based
music score feature is used.

5. Condition AR(HC): Same as LR(HC), except in-
stead of using linear regression on hand-crafted fea-
tures, autoregressive coefficients are directly esti-
mated from the hand-crafted features using the DNN
described in Figure 2.

6. Condition AR(DNN-M): The proposed method
without the performance feature. It uses a DNN-
based score feature extraction, and a DNN-based au-
toregressive coefficient extraction.

7. Condition AR(DNN-M+P): The proposed method.
It uses both performance and a DNN-based score
features, and a DNN-based autoregressive coeffi-
cient extraction.

4.2.1 Results and discussion

The results are shown in Figure 4. First, the proposed
method consistently outperforms the baseline methods, by
up to 18% when compared with MA for 8-step prediction.

Second, prediction with an AR model outperforms a LR
model, for both hand-crafted and linear features. That is,
AR(HC) outperforms LR(HC) and AR(DNN-M) outper-
forms LR(DNN-M). This is surprising because linear re-
gression is, in our context, auto-regression with an addi-
tional bias term explained by the features. This shows that

auto-regressive models without a bias term is beneficial for
expressive tempo prediction.

Third, feature extraction with DNN surpasses hand-
crafted features, for both linear regression and auto-
regressive models. That is, LR(DNN-M) outperforms
LR(HC) and AR(DNN-M) outperforms AR(HC). This
shows that directly training feature extraction from a sym-
bolic music information is beneficial for expressive tempo
prediction.

Finally, the incorporation of the performance history τ
improves the prediction. That is, AR(DNN-M+P) outper-
forms AR(DNN-M). The effect is more prominent when
making a prediction with a long forecast like a half note
ahead (4-step) or a whole note ahead (8-step).

4.2.2 Distributions of the prediction errors

The distribution of 8-step prediction error is shown in Fig-
ure 5. For sake of clarity, we only show distributions
that highlight properties of different features or prediction
models.

It first shows that moving average (MA), the simplest
method of all, is unbiased but suffers from the worst out-
lier. This is reasonable because it is good at tracking steady
tempo, but has no capability to anticipate the next tempo
during tempo changes.

Second, AR model tends to make negative errors, i.e., it
tends to anticipate that the next note will slow down. Such
a tendency arises because musicians tend to slow down
more often in a given song than they speed up. This kind of
asymmetric tempo change encourages the AR model to an-
ticipate every note to be slowing down when using squared
error for training.

Finally, the proposed method enjoys increased robustness
against outliers. Therefore the primary benefit of incorpo-
rating performance feature is the capability to prevent a
large mistake.

4.3 Evaluation of music score feature extraction

We have conducted an ablation study to assess which com-
ponents are effective for computing the music score fea-
ture. To this end, we have compared the multi-step pre-
diction errors when using different kinds of music score
feature extractor as follows:

1. Condition FC: The music score feature is obtained
using one fully-connected layer applied to the piano-
roll. Combined with the two fully-connected layers
in the prediction coefficient function, this model is a
perceptron with three hidden layers, making it simi-
lar in essence to the architecture used for generation
of expressive dynamics from the music score [4].

2. Condition Conv1: The music score feature is ob-
tained by one convolutional layer followed by max-
pooling and fully-connected layer.

3. Condition Conv2: Same as Conv1, except we use
two convolutional layers.



Figure 5: Histograms of the prediction errors, centered about the origin (right), and zoomed in for tails (left).
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Figure 6: Multi-step prediction error with different ways of
computing the music score feature. Differences of absolute
errors are significant, except for condition FC and Conv1
of 2-step prediction and FC and Conv2 of 8-step prediction
(Kruskal-Wallis Test, p < 0.01).

4.3.1 Results and discussion

The results are shown in Figure 6. It can be seen that even
with simple network like FC, it helps to automate feature
extraction, as can be seen by comparing with AR(HC).
Furthermore, addition of more convolutional layers im-
proves the accuracy.

4.4 Analysis through performance rendering

To qualitatively analyze the kind of prediction made by
the model, we analyzed the tempo curve generated by the
model when it predicts the tempo based on its own predic-
tions. That is, instead of predicting the tempo curve based
on a human performance, we drove the AR model with its
1-step prediction, and apply the following low-pass filter
to let the prediction stay about some average m:

τn = (1− α)m+ α

I−1∑
i=0

a1,i(Sn, τn; Θ)τn−i. (5)

Here, α ∈ [0, 1] is a parameter that controls how much τn
reverts to m. m was set to the the mean tempo for each
piece, and α was set to 0.5.

4.4.1 Results and discussion

In Figure 7, we present two examples from songs not con-
tained in the training dataset, one demonstrating a perfor-
mance idiom pertaining to harmony and another specific to

piano playing. We invite the readers to listen to the exam-
ples at the web page mentioned in the introduction.

First, the method seems to capture performance idioms
related to cadences. To demonstrate, Figure 7a shows an
excerpt from a simple piece, Mozart’s Variations on Twin-
kle Twinkle Little Star. The generated tempo slows down
in the bounded rectangle, which is a perfect cadence. It
shows that the method is capable of capturing a common
idiom of slowing down before a cadence. This behavior is
quite consistent and also seen in other variations as well.

Second, the method seems to also capture a typical id-
iom pertaining to the left-hand technique. Figure 7b shows
an excerpt from a technically and harmonically more com-
plex piece, Rachmaninoff’s Piano Concerto No. 2. We
observe, qualitatively, a few idioms related to piano play-
ing. First, the beginning of the bar tends to start slowly,
forming an arc-like tempo curve (label “1” in Figure 7b).
This kind of playing is consistent with a typical piano play-
ing [2,23]. Second, this kind of behavior is not hard-coded,
but rather depends on the surrounding musical context; for
example, the tempo does not slow down in a non-cadence
progression (label “2,” a progression from D dim7 to C7/E,
which will resolve to Fm). Furthermore, the most promi-
nent drop in the tempo occurs at a climactic segment inside
the phrase (label “3”). These behavior seem concordant
with how this particular piece is played.

The generated tempo curve depends on harmonic changes
or accompaniment patterns, suggesting that the music
score feature extraction was able to learn relevant relation-
ship between music score and tempo changes. We believe
that the kind of predictions made by our method captures
the essence of music context and performance for making
sensible timing predictions in interactive music systems.
These results show the expressiveness of our model, de-
spite the fact it uses far fewer information from the score
than those typicaly used in music performance rendering
[11], but they also qualitatively address some limitations of
our method. First, it does not take into account the genre.
The generated tempo curves are mostly in the style of late
Romantic pieces which tend to exaggerate the tempo, but
sometimes such exaggerated tempo curves are stylistically
inappropriate for earlier music like the Mozart example.
Second, the system is agnostic to the larger structural con-
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tempo curve (denoted 1), but the behavior is dependent on surrounding context (denoted 2). The most dramatic drop of tempo occurs at
Fm → E dim7/F progression (denoted 3).

Figure 7: Examples of the generated tempo curves.

text. For example, the Mozart example shows the A1 sec-
tion to a variation whose structure is ternary, i.e., A1BA2.
The system consistently slows down the last cadence, but
it is generally appropriate to only slow down the A2 sec-
tion. Third, the method is agnostic to (1) additional cues in
the music score, such as the phrase, the expression and the
tempo markings, and (2) performance cues like the articu-
lation and the dynamics.

4.4.2 On the ease of stability analysis

It is easy to analyze and modify the behavior of our model
since we model the prediction as a linear AR model, whose
properties are well-understood. We believe that such a ca-
pability to analyze and correct the system’s behavior is
beneficial for real-time interactive music applications such
as automatic music accompaniment, since it provides an
interpretable form of performance guarantee for human
musicians.

To demonstrate, we have trained our model and estimated
the AR coefficients at one point for a given music score
Sn and past performance history τn−i, for 1-step tempo
prediction. Figure 8 shows the poles and the frequency
response of the inferred AR process. It can be seen, for
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Figure 8: Pole-zero diagram (left) and the frequency re-
sponse (right) of the autoregressive model inferred using
our method.

example, that the system is unstable because the poles are
outside the unit circle, resonating to oscillations at a nor-
malized frequency of 0.15, or about a dotted eighth note.
If a stable behavior is desired, then it is possible to cor-
rect the AR coefficients such that the maximum magnitude
response is bounded.



5. CONCLUSION

This paper proposed an online method for predicting a hu-
man performer’s expressive timing, based on the music
score and the performance history. The method is both mu-
sic score-aware and performance-aware, and is capable of
extracting useful features from the score that are relevant
to timing prediction. We have shown on a difficult dataset
of expresssive virtuoso piano playing that (1) incorporating
both contextual information from the performance and the
music score contributes to accurate timing prediction, (2)
a deep architecture, especially convolutional architecture,
is useful for extracting relevant features from the music
score, and (3) the model seems to acquire common idioms
in piano playing, according to the generated tempo curves.

Future work includes (1) integrating the model with in-
teractive music systems, (2) predicting more aspects of hu-
man music performance like the dynamics, (3) incorporat-
ing of more elements of the music score like the dynam-
ics, phrasing and expressive marking, and (4) incorpora-
tion of additional performance cues such as the dynamics
and body gestures for prediction.
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