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ABSTRACT

Score following matches musical performance audio with 
its symbolic score in an on-line fashion. Its applications 
are meaningful in music practice, performance, education, 
and composition. This paper focuses on following piano 
music — one of the most challenging cases. Motivated by 
the time-changing features of a piano note during its life-
time, we propose a new method that models the evolution 
of a note in spectral space, aiming to provide an adaptive, 
hence better, data model. This new method is based on a 
switching Kalman filter in which a hidden layer of contin-
uous variables tracks the energy of the various note har-
monics. The result of this method could potentially bene-
fit applications in de-soloing, sound synthesis and virtual 
scores. This paper also proposes a straightforward evalu-
ation method. We conducted a preliminary experiment on 
a small dataset of 13 minutes of music, consisting of 15 
excerpts of real piano recordings from eight pieces. The 
results show the promise of this new method.

1. INTRODUCTION

Score following matches musical performance audio with 
its symbolic score, as illustrated in Figure 1. This paper fo-
cuses on following piano music, which is one of the most 
challenging score following cases, due to the high degree 
of polyphony in the piano. We restrict our attention to 
the on-line version of the problem which allows no “look 
ahead” in the audio, as is appropriate for real-time applica-
tions.

Score following is the foundation of many useful appli-
cations. It forms the heart of any musical score page turner 
[1], as well as a crucial layer of automatic accompani-
ment systems [2]. For composers, it enables virtual scores, 
scores that consist of electronic programs that react to a 
live performance [3]. Using the recognized score informa-
tion during a performance, a score follower can give feed-
back concerning the performance at the signal level, which 
can be further developed into a music-education tool, e.g., 
a computer tutor [4]. It can also serve real-time audio en-
hancement applications, processing the input audio while 
outputing the enhanced audio in real-time, e.g., auto-tune 
in a live performance.
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Figure 1: An ideal score-following result of an example
excerpt. The dotted red lines are note/chord onsets.

Most methods of score following share the same general
idea: possible (hypothesized) performances are viewed as
paths through a state graph which is derived from the mu-
sical score. For any moment in the audio, we infer the
current state of the performance given the available audio
data (up to this moment) — following the score according
to the played music. However, existing methods differ in
how their models score these paths.

Many methods are based on the hidden Markov model
(HMM) or its variations [5–10], including one of the state-
of-the-art systems, Music Plus One [11], which is the base-
line system in this paper. Another leading system, An-
tescofo [12], uses a hidden semi-Markov model. Some
efforts also model the tempo in music [13–17]. Refer to
Cuvillier [18] for a thorough literature review on this topic.
The off-line version of this problem also shares some com-
mon techniques with score following [13] [19].

The two state-of-the-art systems mentioned above have
been successfully used to follow soloists in live concerts
(mostly on monophonic instruments), but are much less
robust on piano music. Piano music is usually highly poly-
phonic, with many notes sounding at the same time, mak-
ing it significantly more difficult to develop a discrimi-
nating data model. In addition, pedaling often prolongs
notes beyond their nominal offsets in the score, causing
mismatches between the audio and the score. For those
reasons (among others), piano score following remains an
open and unsolved challenge.

The purpose of this paper is to introduce a new approach
to data modeling in score-following problems, especially
for piano music. Existing methods generally assume that a
note has a fixed data model that is applied to all (or most)
frames associated with that note, with the possible excep-
tion of the opening frame(s) where the “attack” happens.
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However, this assumption is flawed, especially for piano
audio. Each piano note decays over time, with significantly
different decay rates for different frequencies. This results
in a changing frequency spectrum over the life of the note.
Our current effort models this note-level harmonic evolu-
tion. Based on Music Plus One’s HMM framework, we
use a switching Kalman filter [20] to track the individual
amplitudes of the harmonics of each note. This model can
adapt to the time-changing features of a note, providing,
we hope, a more discriminating data model.

There are applications that could potentially benefit from
the tracked amplitudes as part of our score following re-
sults. One example would be de-soloing, where the precise
model of the data could be used to “subtract” or remove
it from a recording with other instruments. In modeling
the piano sound for synthesis, such amplitude information
could also be useful. In addition, the tracked amplitudes
can provide valuable information for virtual score related
applications — for example, triggering a program when a
harmonic decreases below a certain threshold.

2. REPRESENTING SCORE

We simplify a musical score as a sequence of chords (Fig-
ure 2), essentially adopting a homophonic view of the mu-
sic. This way, polyphonic music can be represented lin-
early as a sequence of event pairs: {musical time, note(s)}.
We simply refer to these events as “chords” in this paper.

Figure 2: “Homophonic” view of polyphonic music (mod-
ified from [21]). The left bar is the original score with two
voices. The right bar represents this score as a sequence of
chords.

3. METHOD

In this section, we first introduce the HMM framework that
represents the baseline method. This HMM framework is
also the foundation of the proposed new method. We then
explain the motivations of our new method and its assump-
tions, before describing how a Kalman filter tracks a single
partial of a chord. Lastly, we explain how the Kalman fil-
ter fits into the HMM framework, resulting in a switching
Kalman filter model that tracks the changing features dur-
ing the evolution of a note.

3.1 HMM Framework

A score-following HMM models the performance as a path
through a state graph. The state graph is constructed di-
rectly from the score by specifying one or several states
for each note (or chord), while forcing left-to-right move-
ment through these states. We model time as a sequence
of audio “frames”, each frame about 64 ms. long. We
denote the state process, modeled as a Markov chain, by
X1, X2, . . . , XT where T is the total number of frames,
as in Figure 3. If Xt = xt, for some graph state xt, we

Figure 3: HMM in the baseline model. Squares are discrete
variables; circles are continuous variables.

denote its corresponding chord index by C(xt). The state
graph, along with the transition probabilities in it, model
the timing information given by the score. They are also
called the prior model because they represent our knowl-
edge about the states before observing any data. Since the
prior (or timing) model is not the focus of this paper, we
refer to Raphael [11] for further details about how the state
graph and transition probabilities are designed.

The other part of the HMM framework is the data model
(our focus) — how we score each hypothesis state accord-
ing to the observed data. The observed data vector for
each frame is the magnitude Fourier spectrum of the corre-
sponding frame of data, normalized to sum to 1. Let vector
yt be this observed feature at frame t, yt = y1t , . . . , y

K
t ,

and let qi = q1i , . . . , q
K
i be the template of chord i with

the same dimension, K. The template is also normalized
to sum to 1, thus representing it as a probability distribu-
tion. If we view the feature vector yt as the histogram of
a random sample from qi, the likelihood of observing this
feature given the state is a multinomial distribution (the
eliminated constant coefficient is irrelevant for comparing
different hypotheses because the data is fixed):

P (Yt = yt|Xt = xt) =

K∏
k=1

qki
yk
t ,

where i = C(xt).

The template is a mixture of all notes involved in a chord,
and each note is composed of a Gaussian mixture, one
component for each harmonic of the note. For example,
Figure 4 shows the template of a single note A4 or E5,
along with two possible templates of the chord “A4 and
E5”. In the baseline model, the template for each chord,
qi, is carefully calibrated, but fixed — it cannot adapt to
the given data once it is (pre)defined. In other words, the
baseline model assumes that the (normalized) spectrum of
a chord can be expected before observing the data, and that
it does not change over the lifetime of the chord (from the
onset frame until the onset of the next chord). However,
in fact, we do not know the relative ratio of the notes in
a chord beforehand, thus cannot accurately anticipate the
template of this chord (e.g., c and d in Figure 4), and the
chord’s spectrum does evolve over time. We propose a new
method that uses flexible templates, allowing them to adapt
to the changing energy distribution among harmonics dur-
ing a chord’s lifetime.



(a) Note A4’s frequency profile. (b) Note E5’s frequency profile.

(c) The frequency profile of A4
mixed with E5 by the ratio of 1:1.

(d) The frequency profile of A4
mixed with E5 by the ratio of 1:2.

Figure 4: a and b are the frequency profiles of two different
notes. c and d are the frequency profiles of a two-note
chord, played with two different relative loudness ratios.

3.2 Motivations and Assumptions

The piano is a percussion instrument; the sound of each
note decays over time, in sharp contrast to instruments
like the violin where the entire evolution of each note re-
mains under the player’s control. The rate of decay dif-
fers among different partials, with higher frequency par-
tials usually decaying faster than the lower ones, thus lead-
ing to a changing spectrum in the same chord. The base-
line method, however, cannot capture this phenomenon,
because all frames within a chord share the same fixed
spectrum template. This causes a mismatch between the
data templates and the real observed data. In contrast, our
proposed method updates the spectrum template at every
frame after observing the newly received data.

Given a specific chord, we know where its partials lie
in the frequency domain, though we are not sure about
their relative intensities. We model every partial in the
frequency domain with the shape of a truncated (and dis-
cretized) Gaussian density function, as in the left column
of Figure 5. We divide the template into multiple fre-
quency regions according to the location of the partials,
each region completely separate from the others (by the
dotted line in Figure 5). To make the computation plau-
sible, the data model assumes that the amplitudes govern-
ing the different harmonics are conditionally independent,
given the state. That is to say, for a single chord hypothesis,
there might be a collection of neighboring frames associ-
ated with this hypothesis, and the harmonics are assumed
to evolve independently from each other in these frames.
We have also considered the inharmonicity of a piano when
constructing partials.

Some of these partials might overlap in frequency; it is
common for harmonics from different notes to “collide”

Figure 5: Demonstration of partials. Left: the original
structure of six partials; Middle: the partial structure of
four independent partials after merging; Right: a data tem-
plate which is a superposition of four partials with different
amplitudes. Each region divided by the dotted lines corre-
sponds to one independent Kalman filter.

at the same frequency, creating an identifiability problem
in distinguishing their amplitudes. In practice, we address
this by merging them, and treat them collectively as a sin-
gle partial that also has the shape of a truncated Gaussian,
and with the same frequency boundary as the group (mid-
dle column of Figure 5).

3.3 An Independent Kalman Filter

We use a Kalman filter, independently for every region, to
track the amplitude of the partial. The independence of the
Kalman filters is justified by the assumption that the par-
tials have non-overlapping support. This section describes
how a single Kalman filter tracks the amplitude of one par-
tial (including merged partials) over the lifetime of a chord.
Let’s look at the pth partial of a chord. The shape of this
partial is denoted by bp, which is truncated within a limited
range of frequencies, as in the left column of Figure 6. bp

is a constant vector and sums up to 1. Denote this partial’s
amplitude at frame t as apt , and assume apt ∼ N (mp

t , v
p
t )

— a normal distribution with mean mp
t and variance vpt .

The amplitude decays with time, decaying exponentially
at rate λ (< 1), perhaps depending on the frequency. The
Kalman filter models this decay as

apt = λ apt−1 + εpt ,

where εpt ∼ N (0, σ2). Figure 6 shows the decay of a
partial over three frames. Note that we are not tracking
the amplitude of every frequency, but the amplitude of the
truncated Gaussian, bp. For example, at given time t, the
most likely spectrum of this partial ismp

t ·bp, which is still
a truncated Gaussian.

At this frame, the predicted observation is modeled as

yt
p = apt · bp + δt

p,

where the components of δtp are independent 0-mean Gaus-
sian noise: δt

p ∼ N (0, ρ2I), and yt
p is the observed

data within the frequency range of partial p. Under these
assumptions, the Kalman filter provides a straightforward
update equation computing the conditional distribution on



Figure 6: The shape of a partial (left), and its amplitude’s
decay between neighboring frames.

p(apt |y1
p, . . . ,yt

p). Note that the observed data at frame
t, yt, is a superposition of all members in {yt

p}.

3.4 Switching Kalman Filter

This section describes how the Kalman filters for tracking
individual partials extend the filtering framework of our
HMM. In Figure 7, the newly added middle layer of vari-
ables (cf. Figure 3), notated as A, represents the ampli-
tude information of all partials in state X’s corresponding
chord. A chord has multiple partials, {apt }, p = 1, . . . , P ,
each of which is tracked by an independent Kalman filter
as described above. For example, in Figure 5, each of the
four partials is tracked by an independent Kalman filter. At
each frame, we update a chord hypothesis’ template by the
tracked amplitudes of its partials, resulting in models that
are better adapted to the audio data.

Figure 7: Directed acyclic graph showing the conditional
independence structure of the model variables. X and A
are hidden variables; Y is observable variables. Squares
are discrete variables; circles are continuous variables.

At every frame, there will be multiple hypotheses con-
cerning its position in the score, Xt. Each hypothesis has
an associated Gaussian distribution for each of the chord’s
partials. Therefore, writing y1:t for y1, . . . ,yt, our rep-
resentation of the filtered distribution (the distribution on
the hidden variables at time t after observing the data up to
time t) is

p(xt,at|y1:t) = p(xt|y1:t)

P∏
p=1

p(apt |xt,y1:t). (1)

In contrast with the HMM filtered distribution, our switch-
ing Kalman filtered distribution is given by a discrete state
probability, p(xt|y1:t), and a product of Gaussian densi-
ties on the {apt }, for each hypothesis on the current discrete
state, xt.

From frame t to t + 1, the amplitudes evolve in two dif-
ferent styles depending on the values of the new state —
the new state either remains in the same chord, C(xt+1) =
C(xt), or must move to the subsequent chord, C(xt+1) =
C(xt) + 1. In the former case, the structure of the partials

doesn’t change, and all partials simply follow the evolution
process described in Section 3.3. In the latter case, a new
chord is starting, with a different harmonic structure from
the previous chord. We assume that any new partials are
initialized from a default distribution, apt+1 ∼ N (m0, v0),
where m0 and v0 are the initial mean and variance of a
partial’s amplitude, while any continuing partials from the
previous chord simply evolve according to the Kalman fil-
ter model in Section 3.3.

3.4.1 Inference

This section explains how the filtered distribution of the
two hidden variables, xt and at (as in Equation (1)), evolves
as it goes from t to t+1. It includes two steps: after condi-
tioning on the new data observation, yt+1, it marginalizes
out the partial amplitudes, at; then, it marginalizes out the
state, xt. These two steps will be represented in Equation
(2) and Equation (3) respectively.

Let’s look at the amplitudes first. As mentioned in Sec-
tion 3.4, the amplitudes evolve in two different styles. In
the case of a continuing chord, we can compute the proba-
bility

p(xt+1, xt,at+1|y1:t+1) =
∏
p

p(xt+1, xt, a
p
t+1|y1:t+1)

(2)
according to the usual update formula of the Kalman fil-
ter, applied independently to each partial, apt+1. In doing
so, the distribution for each partial apt+1 is conditioned on
the relevant (and non-overlapping) portion of yt+1. In the
other case, if it is a new chord, the amplitudes of new par-
tials adopt the default distributionN (m0, v0), and the con-
tinuing partials follow the same process as in the case of a
continuing chord. Therefore, in the latter case, too, we
can compute the value of Equation (2) in a straightforward
manner.

The above discussion shows how to marginalize out the
continuous variables {apt } through the standard Kalman
filter formulation. The difficulties of implementing a switch-
ing Kalman filter arise when we further marginalize out the
discrete variable, xt, by

p(xt+1,at+1|y1:t+1) =
∑
xt

p(xt+1, xt,at+1|y1:t+1).

(3)
The difficulty is that different predecessors, xt, are asso-
ciated with different estimates of at+1. When summing
out all possible predecessors, the estimate of each partial’s
amplitude becomes a Gaussian mixture model. The num-
ber of components grows exponentially with t, making the
problem intractable without approximation. We use an ap-
proach familiar in the switching Kalman filter literature,
approximating the mixture of multiple Gaussians by a sin-
gle Gaussian with the same mean and variance as in the
mixture [20]. Say the ith element in the mixture is a Gaus-
sian N (mi, vi), and has probability pi (mixture weight).
The approximated Gaussian, then, has mean and variance:

m =
1∑
i pi
·
∑

i
pi ·mi



v =
1∑
i pi
·
∑
i

{
pi · vi + pi · (mi −m)2

}
Figure 8 demonstrates this process.

Figure 8: Approximation of a mixture of three Gaussians
by a single Gaussian (with thicker blue line).

4. PRELIMINARY EXPERIMENT

We conducted a preliminary experiment on a small dataset.
The purpose of this experiment was to benchmark the ini-
tial development of this new method (with a state-of-the-
art system), and to inspire further discussions about this
direction. We also propose a new evaluation method.

4.1 Data and Settings

The dataset consists of 15 excerpts of real piano perfor-
mance recordings of eight pieces, detailed in Table 1. Each
excerpt lasts about 45 seconds on average, making the dataset
13 minutes in total. The audio is sampled at rate 8 kHz.
The frame length is 512 samples (64 milliseconds), and the
hop size is 256 samples. There are five important param-
eters in our proposed method (cf. Sections 3.3 and 3.4.1):
the decay factor, the variance of the process noise, the vari-
ance of the observation noise, and the initial mean and vari-
ance of partials’ amplitudes when a new partial comes into
existence. They were manually set in this experiment. The
audio data are available at http://music.informatics.indiana.
edu/papers/smc19-evolution/.

Index Composer Piece Measures
1 Mozart Piano Concerto No.17 in G major, mvmt1 74 - 94
2 Mozart Piano Concerto No.17 in G major, mvmt1 139 - 171
3 Mozart Piano Concerto No.17 in G major, mvmt1 184 - 207
4 Schumann Piano Concerto in A minor, mvmt1 1 - 4
5 Schumann Piano Concerto in A minor, mvmt1 11 - 19
6 Schumann Piano Concerto in A minor, mvmt1 58 - 67
7 Chopin Barcarolle, Op.60 1 - 9 (1)
8 Chopin Barcarolle, Op.60 1 - 9 (2)
9 Chopin Prelude, Op. 28 No. 4 1 - 12
10 Chopin Prelude, Op. 28 No. 4 13 - 26
11 Schubert Six Moments, D. 780 No. 2 1 - 17
12 Schubert Six Moments, D. 780 No. 2 18 - 36
13 Debussy Prelude, No. 2 (Voiles) 1 - 21
14 Beethoven Piano Sonata, No. 8 (Sonata Pathétique) 1 - 10
15 J.S. Bach Wachet auf, BWV 140 1 - 12

Table 1: Piano excerpts in the experiment. Excerpts No. 7
and No. 8 are different performances of the same music.

4.2 Evaluation Method and Results

Evaluating (on-line) score-following systems is different
from evaluating off-line alignment systems, where one could
judge the result by simply comparing the detected notes
with the ground truth, e.g., counting the mislabeled frames.
Here, however, we cannot count mislabeled frames be-
cause there is no onset detection that follows directly from
the filtered distribution (unlike in Cont et al. [22]).

We propose a new evaluation method that assesses the fil-
tered distributions at each frame in a straightforward man-
ner. The frame-wise accuracy is defined as follows. For
each frame t, the filtered approximation contains the dis-
tribution p(xt|y1:t). Using ground truth, we can compute
the probability of the filtered distribution covering the cor-
rect chord as

Acct =
∑

xt:C(xt)=it

p(xt|y1:t),

where it is the ground-truth chord index for frame t. The
total measure of the accuracy aggregates this over all frames:

Acc =
∑
t

Acct,

which summarizes how well the algorithms perform.
We use one of the state-of-the-art systems, Music Plus

One [11], as the baseline, and compare it with our pro-
posed method. Table 2 shows the frame-wise accuracies
of the 15 excerpts. The proposed method has 5.7% higher
accuracy than the baseline on average. It also beats the
baseline more often.

Index Baseline Tracking Note Evolution
1 0.78 0.82
2 0.82 0.81
3 0.69 0.72
4 0.71 0.80
5 0.79 0.88
6 0.76 0.80
7 0.71 0.71
8 lost 0.67
9 0.63 0.56

10 0.49 0.50
11 0.86 0.83
12 0.72 0.72
13 0.64 0.71
14 0.72 0.68
15 0.81 0.77

average accuracy 0.675 0.732
win 5 excerpts 8 excerpts

> 5% win 1 excerpt 4 excerpts

Table 2: Comparing frame-wise accuracy between the
baseline and the proposed method. The higher accu-
racy of an excerpt is bolded (italic bolded if higher than
5%). “Lost” means the program failed and the accuracy is
smaller than 0.1.
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5. DISCUSSION

As shown in Table 2, our proposed algorithm achieved
5.7% higher accuracy than the baseline — a state-of-the-art
system. This algorithm also successfully followed excerpt
No. 8 where the baseline completely failed. We found that
this excerpt involves heavier pedaling than others — usu-
ally a sign of the more challenging cases. We speculate that
the new method can provide a more discriminating data
model for one key reason. Both correct and incorrect hy-
potheses can score better by adapting their templates to the
data. However, the correct hypotheses have greater poten-
tial to adapt well, because their templates have the right
adapting freedom that incorrect hypotheses don’t neces-
sarily have. For example, an incorrect hypothesis has to
ignore an observed peak because its template lacks the cor-
responding harmonic of this peak.

Two limitations prevent us from drawing general conclu-
sions about our new method. First, the testing dataset is
small. Second, if we drop the excerpt where the baseline
failed, the new method beats the baseline by only 1.3%.
Therefore, the results are inconclusive. It is possible that
the new approach gained only modest improvement on a
small sample. However, we think this new model is sci-
entifically interesting and is valuable for inspiring further
discovery in this direction.

We should point out that the current version of the model
is fairly basic, and still has much potential to be improved.
The five important parameters mentioned in Section 4.1
were manually set, but training them could potentially lead
to better results. For example, perhaps different frequen-
cies should not share the same decay rate, because higher
frequencies usually decay faster than lower ones.

During the experiment, we discovered that pedaling tends
to cause delayed detection of a chord, because the algo-
rithms can mistake a chord for the previous chord(s) when
observing prolonged note(s) mixed with the current chord.
To address this issue, we will consider modeling pedaling
in future, or including a new feature for detecting a new
starting chord — for example, if the spectrum difference
between neighboring frames is always positive at some fre-
quencies, it indicates that a new chord is starting.

The proposed idea can be generalized to other features
besides the spectrum feature. The spirit is to track the
time-changing nature of a note during its lifetime, aiming
to provide a more accurate and discriminating data model,
especially for challenging cases, like the piano. This flexi-
ble framework also allows incorporating multiple features,
together forming a better data model from different per-
spectives. Based on the generally positive result and the
above discussion, we believe that this direction leads to an
unexplored world, a promising path toward tackling some
of the most challenging cases in the score-following arena.
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