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ABSTRACT

In actual piano practice, people of different skill levels ex-

hibit different behaviors, for instance leaping forward or to 
an upper staff, mis-keying, repeating, and so on. How-

ever, many of the conventional score following systems 
hardly adapt such accidental behaviors depending on in-

dividual skill level, because conventional systems usually 
learn the frequent or general behaviors. We develop a sc 
ore-following system that can adapt a user’s individuality 
by combining keying information with gaze, because it is 
well-known that the gaze is a highly reliable means of ex-

pressing a performer’s thinking. Since it is difficult to col-

lect a large amount of piano performance data reflecting 
individuality, we employ the framework of the Bayesian 
inference to adapt individuality. That is, to estimate the 
user’s current position in piano performance, keying and 
gaze information are integrated into a single Bayesian in-

ference by Gaussian mixture model (GMM). Here, we as-

sume both the keying and gaze information conform to 
normal distributions. Experimental results show that, tak-

ing into account the gaze information, our score-following 
system can properly cope with repetition and leaping to an 
upper row of a staff, in particular.

1. INTRODUCTION

The goal of our study is to build a score-following sys-

tem that adapts a user’s individuality. Score-following is 
one of the important topics in MIR and is a fundamental 
technique used in many applications including automatic 
accompaniment, estimation of current position from au-

dio [4, 5, 19], and estimation from symbols [2, 3, 16, 17]. 
In reality, a score-following system may often face prob-

lematic situations, in which current position leaps forward 
or backward freely. Such leaps occur because of repeti-

tion and wrong keying, and during practice. Therefore, 
researchers of score-following attempt to propose systems 
and/or algorithms for reacting to or tracking a current po-

sition which includes occasional leaping forward or back-

ward [10–12, 18]. For a score without repeated and/or it-
erated phrases, conventional systems and algorithms can 
estimate current position almost correctly.
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Gaze can give us significant information for score-foll

owing, when, for instance, starting performance from an

arbitrary position [13]. Our system can use gaze informa-

tion to estimate current position correctly to some extent,

even when keying information is unavailable. There is,

however, a crucial issue to be considered which is called

eye-hand-span (EHS). EHS means the distance between

the point on the score at which a player looks to obtain, in

advance, information of notes to be played, and the actual

current keying position [14]. Usually, during performance,

a pianist looks at a point on the score approximately a

phrase or a few notes ahead of current keying position.

Since the length of EHS depends on, for instance, individu-

ality, the structure of the melody, the degree of proficiency,

and tempo, our previous system takes into account the av-

erage length of EHS obtained from experimental data and

estimates the current position from both gaze and keying

information multiplied by fixed weights. Thus, the system

unfortunately neither conducts individual EHS estimation

nor assigns the optimum weights to both gaze and keying

information for each pianist.

This paper proposes a score-following system, which a

dapts a user’s individuality in piano practice. Due to the

difficulty of collecting a large amount of individual’s per-

formance data to learn, we adopt the Bayesian inference,

which has the advantage that it can be used even if only

a small amount of learning data is available. Thus, we

propose a method for treating gaze (EHS) probabilistically

and integrating gaze and keying information within the B

ayesian inference framework. First, we assume the length

of EHS follows the normal distribution and that the dis-

tribution is updated dynamically by observed data. We

define the distribution of keying information in the same

way. Next, we integrate gaze and keying information, us-

ing Gaussian Mixture Model, to be used as the likelihood

function in the Bayesian inference. Advantages of the m

ethod include improvement of the accuracy of estimating

current keying position and the ease of adding other new

features which reflect the user’s individuality and/or think-

ing.

2. RELATED WORK

2.1 Gaze Information and Individuality

A performer perceives music while forming ’chunks’, wh

ich are units to recognize a sequence of pitch events as a

pattern. The size of EHS is related to the size of a chunk.

Weaver revealed that professional performers perceive the
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notes on a score as horizontal and vertical groupings [20].

Furneaux et al. conducted experiments to identify the dif-

ferences in EHS between professional and amateur pianists

[7]. In this research, EHS was defined as the number of

notes between the note(s) being played and the note(s) upon

which the player’s gaze was fixed (performance point and

gaze point). The professional’s EHS (approx. four notes)

was larger than the amateur’s (approx. two notes). From

the point of view of melody, Kobori and Takahashi com-

pared the eye movements when professionals and amateurs

play a melody on piano and guitar [9]. This research sug-

gested that the individuality of performers, the difficulty

of music pieces and the performer’s knowledge on music

pieces were the crucial factors which influenced eye move-

ment.

2.2 Automatic Score Following

A central issue in score following is correctly estimating

performance position in response to a variety of uncertain

events such as leaping forward, mis-keying and repeating.

Nakamura et al. developed a score-following system, Eu-

rydice, that estimated the user’s current position using im-

proved HMM and Viterbi algorithm [17]. Since the weight

was calculated based on distance, Eurydice tended to es-

timate a position near the previous current position. To

some extent, Eurydice achieved accurate estimation in per-

formance containing unexpected movements such as mis-

takes, repeats, and skips. However, since Eurydice used

only keying information, it was difficult to identify the

phrase being played in the case of a melody containing

many repeated phrases.

Terasaki et al. proposed a score-following system that

was hardly affected by unexpected movements [13]. The

system introduced gaze likelihood to the cost of DP match-

ing. Gaze likelihood was obtained by HMM, which was

employed for predicting gaze and removing noise from the

raw data of eye movement. The system could correctly

estimate current position, even when a player started at

a point different from the previous point at which he/she

had stopped playing, or a beginning point of a repeated

phrase. Terasaki et al. evaluated the estimation error rate

for musical scores including repeated phrases and found

that the correct answer rate was improved by 1.2 times

(from 72.7% to 85.2%). However, the system unfortu-

nately could not cope with the individuality of EHS.

Grubb et al. introduced the Bayesian inference into an

automatic accompaniment system [6]. They defined the

probability distribution with respect to note number i as a

random variable, which was updated every time data was

observed. Parameter d stands for the estimated distance

from a pre-estimated position, v the observation value, and

j the performer’s position at the previous timing. The es-

timated position was updated by the most recent observa-

tion. First, based on the previous position and estimated

distance, the current position is estimated, as follows.

fI|D(i|d) =

∫ ‖Score‖

j=0

fI−J|D(i− j|d) · f Source (j)∂j

Next, this estimated value is further updated to take into
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Figure 1. System Configuration

account the observation using the Bayesian inference, as

follows.

fI|D,V (i|d, v) ∝ fV |I(v|i) · fI|D(i|d)

fV |I(v|i) is made from observation, and is considered as

a likelihood. In an experiment on recorded data and real-

time data, a latency of 159 ms occurred on average. This

value falls belown the limit of latency that humans can per-

ceive, which is 10∼ 100 ms [5]. Thus, Grubb’s system

did not interrupt piano performance, but users reported that

they felt some discomfort.

3. A SCORE-FOLLOWING SYSTEM USING

KEYING AND GAZE INFORMATION

This section describes the score-following model which

deals with gaze, and shows how the input data are con-

verted to distributions and how they are combined.

3.1 Combining Gaze information with Keying

Information

Fig.1 shows the processing flow of the proposed system.

The model takes two input data at the same time: key-

ing information and gaze information. The keying infor-

mation as MIDI numbers and the gaze information mea-

sured by an eye-tracking device are entered into the sys-

tem. The system fits the input data to normal distributions,

and integrates the distributions using GMM. After inte-

grating the distributions, by Bayesian inference, the sys-

tem estimates a note number on a score as current position

(i ∈ {1, 2, 3, · · · I}).

3.2 Distribution of Keying

To formalize the keying information as a normal distri-

bution, we need to define the average and the variance.

Firstly, to obtain the average, we use DP matching. DP

matching finds the degree of similarity between notes on

a score and notes being played, called the best match, and

chooses the score position having the best match as a per-

formance position [12]. However, it is difficult for DP



Figure 2. Create the distribution of gaze, with note esti-

mated from EHS as µ

matching to follow a performance which includes back-

ward leaps and repeats. As a simple solution, we employ

an exhaustive search of all the played notes over an entire

score, as in our previous research [13]. Then, we can iden-

tify the note number eDP ∈ {1, 2, 3, · · · I} that is most

probably the average value. Next, we define a value cor-

responding to the variance. For all notes, we calculate the

average distance
∑

|xi − xi+1|/I between every adjacent

note in the horizontal direction. Let us regard the value ob-

tained as the standard deviation of the distribution of key-

ing. Then, we define the keying distribution as follows:

pDP (i) ∼ N(µDP , σDP )

where µDP is equal to eDP and σDP is (
∑

|xi−xi+1|/I)
2.

3.3 Distribution of Gaze

To introduce the gaze information, we define the distribu-

tion of gaze considering eye-hand-span (EHS) in Fig.2.

EHS consists of the horizontal and vertical spans xi − gx
and yi − gy , where (xi, yi) means the note number of the

key being played and (gx, gy) the gaze point on a display

(where, on the display, the user is looking). Here, con-

cerning the size of EHS, we assume it follows the normal

distribution:

px(xi − gx) ∼ N (xi − gx|µgx
, σgx

) (1)

py(iy − gy) ∼ N (iy − gy|µgy
, σgy

) (2)

Terms xi − gx and xi − gy are the lengths of EHS in

the horizontal and vertical directions, respectively. Vari-

ables µg and σg represent the average length of EHS and

the variance, respectively. Since the Gauss-gamma distri-

bution, as prior distribution, is used in the Bayesian infer-

ence, µg and σg can be analytically calculated.

According to the length of EHS learned, we estimate the

user’s current position from gaze point (gx, gy) and assign

gx and gy to Equations(1) and (2). Since, at this moment,

more than one candidate note is obtained, to determine the

user’s current position, we choose a note by calculating the

likelihood of each note, considering EHS, as follows:

eg = argmax
i∈I

[px(i)py(i)]

Figure 3. Integration of distributions by GMM

Then, using the above variables, we define the gaze distri-

bution, pg(i), with eg as the average and σgx
as the vari-

ance (Fig.2).

pg(i) ∼ N(i|egx, σgx
)

3.4 Integration of Multiple Information

We use GMM to integrate the keying and gaze distributions

(Fig.3). To use GMM, we convert the random variable of

keying distribution into a coordinate value on the x axis

on a score (in units of pixels). The integrated probability

distribution by GMM is given by Equation(3) with mixture

ratio πk :

PGMM (i) =

2∑
k=1

πkN(i|µk, σk) (3)

K∑
k=1

πk = 1

where µk = [eDP , eg] and σk = [σDP , σgx].

Since we need to decide the significance of each type of

information, we use the EM algorithm to update mixture

ratio πk.

r(Znk) =
πkN(x|µk, σk)∑2

i=1
πiN(x|µi, σi)

πk =

∑N

n=1
r(Znk)

N

Here, x represents an observation, which is assumed to

have been sampled from the normal distribution of aver-

age µi and variance of σi. To estimate πk, we calculate

the r(Znk) which represents the ratio of the distribution of

each k (k = 1, 2) at the values of the density function of

the mixed distribution at pixel x. Since we cannot know

what a player is thinking, in principle, we cannot know the

true point at which he/she is playing.

To obtain as accurate a value of πk as possible, we in-

structed subjects to play notes in the order indicated by

a score, that is, linearly from the beginning to the end.



Figure 4. Estimating Note by Multiplication of Likelihood

and Mixture Distribution

Mixture ratio πk represents the maximum likelihood of the

mixing ratio. In E step, we calculate the expected value

of PGMM when the mixture ratio is πk. In M step, πk is

optimized by the data obtained by sampling for each note

from a normal distribution that assumes µ = ix, σg =
(
∑

|xi − xi+1|/I)2 by the maximum likelihood estima-

tion. From the obtained mixture ratio, we define the mixed

distribution that is the weighted summation of the keying

and gaze information (Fig.3).

3.5 Estimating Keying Position based on Bayesian

Inference

The current position is estimated from the mixture distri-

bution and likelihood. The relationship between a note and

the variables can be represented by the occurrence proba-

bility of the i-th note, P (i), and the value distribution of

variables, P (θ). To estimate P (i|θ) using Bayesian esti-

mation, it is necessary to know P (i) and P (θ|i) in advance.

However, it is difficult to uniquely determine P (i) be-

cause a performance includes errors and leaps forward and

backward. Thus, we substitute mixed distribution for P (i).
Accordingly, we estimate P (θ|px), where px means the

discrete frequency distribution of θ when note i occurs.

The parameter θ represents a random variable about the

combination of gaze and keying information.

Thus, the random variables depend on the combination

of note numbers and gaze points. To prevent θ from be-

ing sparse, the number of random variables was limited

by using a gaze range, whereby the musical score was di-

vided into 10 parts in the horizontal direction, instead of

gaze points. The bottom part of Fig.4 shows the result

of multiplying the mixture distribution by the likelihood.

The current performance point em is determined so that

the multiplication of P (θ|i) and PGMM (i) is maximized.

em = argmax
i

P (θ|i)PGMM (i)

4. EXPERIMENT

4.1 Experimental Description

By properly assigning the parameters, which are gaze dis-

tribution, keying distribution and mixture rate, our system

can estimate a user’s current position correctly. The param-

eters are drawn from ground truth data which consists of

true current position, MIDI key numbers, and gaze points.

First, by MIDI data we know current notes that subjects

are playing including wrong key strokes. Even if a subject

played a wrong key, a subjects are instructed to continue

playing without trying to recover wrong key strokes dur-

ing piano performance as if a subject plays correct notes.

Then we align the note that a subject plays with the cor-

responding gaze data. Thereby, the system acquires gaze

distribution, keying distribution, and mixture ratio for each

individual subject. After the parameters are identified, we

start the experiment.

4.2 Implementation of Proposed Method

If we take a set piece that the subjects already know, it is

possible that EHS will be biased due to prior knowledge of

the phrases or decreased score reading time. Therefore, we

should adopt a piece that none of the subjects knows. We

select a piece from Yamaha Music Ability Test (Grade 5

Grade) Sight playing / Improvisation and extract the right-

hand part of 27 measures (103 notes) [1]. The set piece

contains three identical phrases and there are nine dupli-

cated notes (Fig. 5). On a screen, we show the score im-

age, which is made with MuseScore to remove any musical

symbols such as staccato and slur. Thus, the bar lengths of

a score on a screen are variable depending on the number

of notes and symbols in each bar.

The GUI of the system is implemented in Processing and

the model part in Python. The system obtains keying in-

formation from the MIDI keyboard and gaze information

from a gaze measuring device, Eye-Tribe ET1000, which

does not disturb performance because it is small and sta-

tionary [15]. The effective range of the distance between

the device and user’s eyes is 45 to 75cm, and the spatial

resolution is the angle of 0.1 degree, which means the reso-

lution of 0.17cm, 50cm ahead. To calibrate the system, six-

teen points are showed on a screen one by one. The frame

rate of the Eye-Tribe generates sampling data of gaze in-

formation at a frame rate of 30 Hz.

The gaze data is transmitted to the model part in Open

Sound Control (OSC), which is the protocol for commu-

nication among computers, sound synthesizers, and other

multimedia devices. After estimating a user’s current posi-

tion by the algorithm described previously, the model part

transmits it to GUI. To superimpose the position of the esti-

mated playing note, the melody of the set piece is displayed

in the x-axis of note number i and the y-axis of MIDI note

number.

4.3 Evaluation Procedure

To obtain experimental data, we asked seven subjects (Sub-

jects A to G) to play a set piece. Five of the subjects (A to

E) had experience of learning the piano, and the other two
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Figure 5. The set piece that contains three identical phrases and there are nine duplicated notes

(F and G) did not but could read a musical score. If a sub-

ject plays a melody linearly following a score, of course,

the system can estimate almost every note correctly. Next,

subjects were instructed to play parts of the piece in re-

verse order. For instance, subjects played from the 20th

to the 23rd measure immediately before they played from

the 6th to the 9th measure (Fig. 5). Here, the accuracy rate

was defined as the rate at which performance position is

correctly estimated with respect to all keystrokes.

4.4 Results and Discussion

Table 1 shows the number of passed-over keys, that of mis-

takenly pressed keys, the temporal interval between the

restart of the system and the timing of capturing correct

position (latency in the table), and the accuracy rate. In re-

gard to the accuracy rate, we see a large gap between two

groups: a group that has a rate of more than 90% (Sub-

jects A to D and F) and the other group (E and G). It does

not seem that the accuracy rates are related to the numbers

of passed-over and mistakenly pressed keys. Concerning

these numbers, Subjects F and G reach the largest num-

bers.

Table 2 shows the weights of the mixture rate. For Sub-

jects A to E who have experience of learning the piano,

the weights of DP matching are larger than those of the

gaze distribution. In contrast, for Subjects F and G (non-

experienced), the weights of gaze are larger than those of

DP matching. We think a reason for this is that GMM de-

termines the weights by the maximum likelihood. Hence,

during score following, keying information plays an im-

Table 1. Accuracy rate and uncertain factors

Subject passed- missed latency acc.

over (%)

experienced A 1 0 1 93.3

B 0 0 2 93.3

C 0 0 2 93.3

D 0 0 0 90.0

E 0 0 1 70.0

non F 1 2 0 96.6

experienced G 0 2 - 0.0

Table 2. The Weight of Mixture Rate

Subject weight of weight of

Gaze DP

experienced A 0.13 0.87

B 0.13 0.87

C 0.15 0.85

D 0.26 0.74

E 0.24 0.76

non F 0.48 0.52

experimented G 0.76 0.24

Table 3. The Differences Between Gaze Points Before and

After the Experiment

Subject Gap for Gap for

x-axis(px) y-axis(px)

experienced A 1.9 -0.7

B 29.8 -1.6

C -56.0 -70.9

D -27.0 -104.7

E -12.9 19.0

non- F 23.2 -143.7

experienced G -85.8 -146.4

portant role for the experienced subjects, while gaze infor-

mation is important for the non- experienced ones.

To examine the performance of the eye-tracking device,

we instructed the subjects to look at the same points on

the score before and after the experiment. Table 3 shows

the average differences of gaze points before and after the

experiment, called Gap in the table. The table shows that

the absolute values of the experienced subject’s gaps are

smaller. The absolute value of G’s gap is the largest, being

shifted left by 85.8 px and upward by 146.4 px. These

values correspond to a shift of a half measure to the left

and almost 1 staff up in Fig. 5.

While the experimental results show that the proposed

method determines the weights of information, to which

the user’s individuality is adapted, with little data, there are

some cases in which position cannot be identified. To ex-

amine such cases, let us consider the relationship between
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Rate

misalignment and the mixture rate. Fig. 6 shows the re-

lationships between the gaps and the mixture rates in the

scatter plot of the gap data in Table 3. The bars under

dots represent the mixture rates for gaze and keying dis-

tributions. In the figure, we can see a trend in which the

accuracy depends on the mixture ratio. In particular, the

gaze mixture rate of Subject F is 0.48, on the other hand,

that of Subject G is 0.76. Although the gaze information

of subject G is weighted more heavily, G’s gaps are also

large. We think it is for this reason that the accuracy rate

decreases.

5. CONCLUDION

In this paper, we proposed a score-following system which

adapts a user’s individuality in piano performance. We fit

gaze information and keying information to the normal dis-

tribution and integrate them into the Bayesian inference by

using GMM. The experimental results demonstrate the rel-

evance of each type of information to the user’s individual-

ity. In particular, the keying information is important for an

experienced performer, on the other hand, the gaze infor-

mation is important for a non-experienced one. However,

regarding the accuracy of the system, large differences oc-

cur among subjects. We think one of the reasons is not con-

sidering misalignment of the eye-tracking system. Future

work will include developing a robust method to deal with

errors related to eye-tracking, and adding other kinds of

information which reflect user’s individuality and/or mind,

such as gesture and blinking.
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