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ABSTRACT 
A Recurrent Neural Network (RNN) is trained to predict 
sound samples based on audio input augmented by con-
trol parameter information for pitch, volume, and instru-
ment identification. During the generative phase follow-
ing training, audio input is taken from the output of the 
previous time step, and the parameters are externally con-
trolled allowing the network to be played as a musical 
instrument. Building on an architecture developed in pre-
vious work, we focus on the learning and synthesis of 
transients – the temporal response of the network during 
the short time (tens of milliseconds) following the onset 
and offset of a control signal. We find that the network 
learns the particular transient characteristics of two dif-
ferent synthetic instruments, and furthermore shows some 
ability to interpolate between the characteristics of the 
instruments used in training in response to novel parame-
ter settings. We also study the behavior of the units in 
hidden layers of the RNN using various visualization 
techniques and find a variety of volume-specific response 
characteristics.   

1. INTRODUCTION
When musical wind instrument sounds are initiated by 
blowing air through or across a mouthpiece, the time it 
takes for the system to reach a stable resonant state is 
referred to as an “attack” transient. When energy ceases 
to be put in to the system, the time it takes for the instru-
ment to return to rest is a “decay” transient. The attack is 
typically complex with different frequency components 
reaching their steady states via different amplitude trajec-
tories (“envelopes”). With physical instruments, the at-
tack characteristics vary significantly across the way the 
instrument is articulated with tongue and breath, and 
across different instruments. The attack characteristics 
are an important perceptual indicator used by listeners to 
identify playing style and the instrument being played 
(Grey [1]).  

Transients are interesting from a modeling perspective 
in part because of their non-instantaneous response to the 
articulation parameters. There is no simple mapping from 
breath pressure to the sound signal the instrument radi-
ates, but there is rather a state-dependent temporal evolu-
tion of the sound that follows sudden changes in the pa-
rameters.   
   In our previous work, (Wyse [2]), we developed a re-
current neural network (RNN) for modeling musical in-

strument sound generation. RNNs were chosen because 
they are structured and often used to model sequences 
such as digital sound samples. The training was condi-
tioned on pitch, volume, and instrument ID in addition to 
the audio stream so that during generation following 
training, the parameters could be used to control synthe-
sis. However, in this previous work, only steady-state 
tones were used during training, so none of the specific 
instrument transient characteristics were learned.  
   In this paper, we train the network on two different syn-
thetic instruments that, in addition to having different 
harmonic structures, also have distinct attack and decay 
times that follow sudden changes in the control parameter 
that we use as a proxy for breath pressure, and that we 
refer to herein as “volume”.  We also explore the activa-
tions of hidden units in response to parameter changes 
during generation and find interesting patterns such as 
volume-specific response characteristics.  

2. MODELING

2.1 Architecture 

The architecture of the model is the same as that used in 
Wyse [2] and is summarized here (Figure 1). It is a 
stacked RNN composed of 4 layers of Gated Recurrent 
Units (GRU) (Cho et al. [3]) sandwiched between dense 
linear layers after the input and before the output.   

The input is a vector of 4 components at each time step 
(sample rate=16000 Hz) representing the audio sample, 
the pitch, volume, and instrument ID. Audio is mu-law 
encoded with 256 values and normalized to [0,1], pitch 
consists of the 13 chromatic notes spanning the octave 
from E4 (fundamental frequency=~330 Hz) to E5 (fun-
damental frequency=~660 Hz) and normalized to floating 
point values in [0,1], and volume was mapped exponen-
tially from a 40 dB range to [0,1]. The output of the net-
work is a vector of length 256, where each component 
represents a mu-law encoded sample value. For training, 
the audio target signal is coded one-hot, and for genera-
tion, the maximally activated unit identifies the audio 
sample produced by the network.  
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Figure 1. The network consists of 4 layers of 40 GRU 
units each. A four-dimensional vector is passed through 
a linear layer as input and the output is a one-hot encod-
ed audio sample. 

2.2 Training Data 

Training data consists of 2 instruments, each with 13 dif-
ferent pitches and 25 different volume levels. The two 
instruments each have their own harmonic structure and 
transient durations. “SynthEven” is constructed of even 
harmonics only, and “SynthOdd” with odd harmonics 
only. The waveforms can be seen in Figure 2a,c. 

a. SynthEven
waveform

b. SynthEven
envelope

c. SynthOdd
waveform

d. SynthOdd
envelope

Figure 2. Characteristics of the two synthetic instru-
ments used to train the neural network. The synthetic 
instruments have different wave forms (a,c) and differ-
ent attack and decay slopes (b,d). The transients follow 
sudden changes in the volume parameter (orange line). 

In addition, SynthEven is constructed with attack and 
decay transients with a linear slope of ±10 volume 
units/sec, while SynthOdd has an attack with slope +100 
and a decay with slope -5 volume units/sec. (Figure 2b, 
d). Note that transients all have constant slope which 
means that the duration of the transients depends on the 
steady-state volume of the tones. 

3. RESULTS

3.1 Steady-state volume 

The focus of the current work is on the transient respons-
es to sudden changes in the volume parameter. However, 
for musical playability, we still require the trained in-
struments to track the volume parameter at steady state as 
well as over smooth changes across its range.  Figure 3 
shows the output of the network for the two instruments 
in response to various input volume parameter patterns.  

Figure 3. From top to bottom: a) SynthEven, pitch=0.5 
(B♭4, ~466 Hz), response to smooth volume change 
over 400 ms. b) SynthEven, pitch=0.5, response to sud-
den volume parameter changes c) SynthOdd, pitch=0.5, 
response to sudden volume parameter changes. In all 
three scenarios the volume parameter (orange line) was 
adjusted between a minimum of 0 and a maximum of 0.7. 
The x-axis depicts sample number. 

The network is thus capable of learning to respond to 
changes in the conditioning input with a state-dependent 
response extended in time. Furthermore, since the net-
work is trained on two different instruments with differ-
ent transient characteristics, the temporal response de-
pends on a second conditioning parameter specifying the 
instrument.    

4. HIDDEN LAYER PATTERNS
Next, we take a closer look at the hidden unit activation 
patterns during synthesis to understand the network com-
putations. With only 40 nodes per layer, we can visualize 
the entire network activation patterns over time.  



 

 

Visualizations show that almost all nodes oscillate with 
individual characteristic waveforms as illustrated in Fig-
ure 4. That waveform is similar across different condi-
tioning parameters, except that the periodicity of the 
waveforms tracks the period of the pitch specified by the 
pitch parameter. The node activations show almost none 
of the frequency selectivity we find in hair cells and neu-
rons along the hearing pathways in animal and human 
brains.  This was somewhat unexpected since a distribu-
tion of frequency-specific response patterns have been 
found in other types of learning networks that operate on 
audio data that learn “efficient” representations for di-
verse audio training data (e.g.  Lewicki [4]; Hoshen et al. 
[5]; Sailor and Patil [6]). For the scope of this paper, we 
just note the pitch-locked oscillatory pattern, but focus on 
responses to volume input. 

Figure 4. The 40 hidden unit responses in Layer 4 of a 
section of generated audio labelled S spanning approxi-
mately 400 samples. Each hidden unit displays a charac-
teristic response waveform, the shape of which changes 
in response to volume level and instrument. In contrast, 
varying the pitch parameter changes the period of the 
hidden waveform without altering its overall pattern.  

The four hidden layers in the network show distinctly 
different patterns in response to volume changes. Layer 1 
(the layer closest to the input) seen in Figure 5, consists 
of units most of which oscillate with amplitudes correlat-
ed with the volume parameter. A few have a “DC offset” 
(some positive, some negative) that also tracks the vol-
ume parameter.  However, none show volume-specific 
selectivity.in their response patterns 

Each succeeding deeper layer shows more complex 
structure. At the last hidden layer (prior to the linear layer 
connecting them to the output units), patterns of volume 
selectivity are clearly visible (Figure 6).  

Figure 5. Layer 1 (shallowest) hidden unit responses to a 
continuous increase in volume. All nodes oscillate with 
amplitude that correlates with the input parameter (as 
well as with the amplitude of the output signal). 

Figure 6. Layer 4 (deepest) hidden unit responses to a 
continuous increase in volume. Individual hidden units 
clearly show unique volume selectivity. 
 
 

 

 

 



 

 

 
 

 
 

Considering only the amplitude of oscillation and not the 
DC offset, we also see in Figure 6 that node 37, for ex-
ample, is maximally responsive to low volume; nodes 39 
and 40 are responsive to mid-range volumes only, alt-
hough node 39 has an upwardly-shifted and wider range 
sensitivity than node 40. Node 15 and 23 only respond to 
high volumes. We have found no responses sensitive to 
the direction of slowly changing volume. These patterns 
are also robust across pitch.  

4.1 Transient responses to abrupt volume changes  

The responses of hidden neurons to abrupt changes in the 
volume parameter are more complex, as would be ex-
pected, since during the attack and decay transients there 
is a “mismatch” between the volume parameter and the 
volume of the output signal. The mismatch is negligible 
during steady state or the slow sweeping volume changes 
considered previously.  

Figure 7 shows the deepest hidden layer for the re-
sponse of SynthEven (i.e. trained with symmetrical attack 
and decay slopes) to a sudden onset and offset of the vol-
ume parameter. The output signal S (along the top of the 
figure) is close to the signal used to train this parameter 
pattern, although further tests showed the overall shape 
and length of the decay being somewhat inconsistent and 

fairly dependent on the parameter combination and the 
priming signal (a single random sample) used to initialize 
the synthesis process. Note that the transients in the sig-
nal output amplitude are an order of magnitude faster 
than the volume sweep used in Figure 5 and Figure 6. 

One notable feature of this map is that although the 
output signal amplitude is roughly symmetric following 
the onset and offset of the volume parameter, the re-
sponse of the units in this layer are not. Far fewer nodes 
show an immediate change in activation following the 
onset of the volume parameter than those that do to the 
offset of the parameter. Such behavior is reflected in Fig-
ure 7 where following the offset of the volume, certain 
units immediately cease to oscillate (e.g. 10, 13, 20, 25), 
while others continue to respond with the decaying am-
plitude. 

Some of the patterns of volume selectivity that we 
found during the slow volume sweep (Figure 6) are still 
visible during transients in the same units. For example, 
unit 40 responds to low volume in the output signal dur-
ing both the attack and decay transients, just as it did dur-
ing the sweep. Units 9 and 10 maintain their relative vol-
ume selectivity during the attack transient as for the 
sweep. However, unit 10 shuts off immediately with the 

 

 
Figure 7. The response of units in the deepest hidden layer to the sudden onset and offset of the volume parameter de-
marcated by the dotted orange lines, with the synthesized signal and time evolution of the volume parameter shown in 
the top row. Conditioning parameters used were as follows: instID=SynthEven, pitch=0.5, volume=0 to 0.8 to 0. 
 



 

 

volume parameter, while unit 9 is active until the output 
signal almost disappears.  

In general, the attack portion of the signal is more relia-
bly generated and consistent in timing than the decay 
portion. This might be due to the asymmetry of the train-
ing regime. During training, the volume always changes 
from 0 to the target volume level for the attack, and from 
the target volume level to 0 prior to the decay. This 
means that for the portion of the signal following the step 
change, the attacks portion of the signal was trained con-
current with 25 different volume levels, while the decay 
portion occurred while the volume was at 0 for all exam-
ples, no matter what the steady-state volume prior to the 
initiation of the decay. A more effective training scheme 
might be to train on step-ups from non-zero values for 
attacks, and more importantly, to train on smaller steps 
down (not all the way to zero) for decays.  

5. CONCLUSIONS 
Wyse [2] developed an RNN that learns to generate sig-
nals for different synthetic and natural instruments (Engel 
et al. [7]) conditioning on pitch and volume so that after 
training, the models could be played under controls simi-
lar to musical instruments. We showed that training ex-
amples could be sparse in pitch, and trained only on 
steady state signals, yet the model responded quickly and 
accurately to pitch parameter values and sequences it had 
never seen during training.  In the current work, we have 
shown that the same model can also capture attack and 
decay transients where the response to the conditioning 
input is extended over time.  

Transients are proving more difficult to capture than 
pitch  or steady-state volume in this small model. They 
are less robust, more sensitive to priming signals (used to 
initialize the hidden state) and noise, and do not seem to 
generalize as easily as pitch or steady-state volume to 
parameter values and sequences not see during training.  
Future work will be necessary to increase the robustness 
of these results and to apply the network to natural musi-
cal instrument data.  

We also explored the activation patterns of nodes in 
hidden layers in response to volume changes and found 
more selectivity in response to volume levels than was 
apparent for pitch. This provides a deeper understanding 
of how the network computes its sound-modeling task, 
which will help guide the further development of this 
type of network for learning interactive musical sound 
synthesis models.  
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