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ABSTRACT

This paper presents a convolutional neural network (CNN) 
able to predict the perceived dissonance of piano chords. 
Ratings of dissonance for short audio excerpts were com-
bined from two different datasets and groups of listeners. 
The CNN uses two branches in a directed acyclic graph 
(DAG). The first branch receives input from a pitch esti-
mation algorithm, restructured into a pitch chroma. The 
second branch analyses interactions between close partials, 
known to affect our perception of dissonance and rough-
ness. The analysis is pitch invariant in both branches, fa-
cilitated by convolution across log-frequency and octave-
wide max-pooling. Ensemble learning was used to im-
prove the accuracy of the predictions. The coefficient of 
determination (R2) between rating and predictions are close 
to 0.7 in a cross-validation test of the combined dataset. 
The system significantly outperforms recent computational 
models. An ablation study tested the impact of the pitch 
chroma and partial analysis branches separately, conclud-
ing that the deep layered learning approach with a pitch 
chroma was driving the high performance.

1. INTRODUCTION

The concept of dissonance has a long history. However, 
the experimental study of dissonance dates back only to the 
middle of the 20th century. Both its definition and causes 
are still subject to discussion. In early studies [1], conso-
nance is defined as a synonym for beautiful or euphonious. 
Sethares [2]) proposed a more general definition of dis-
sonant intervals: they sound rough, unpleasant, tense and 
unresolved.

According to Terhardt [3], musical consonance consists 
both of sensory consonance and harmony. Similar to this 
explanation, Parncutt [4] considers the existence of two 
forms of consonance, one being a result of psychoacous-
tical factors (sensory consonance) and the other one relat-
ing to the musical experience and the cultural environment 
(musical or cultural consonance). Dissonance can thus be 
divided into sensory dissonance and musical dissonance. 
Musical dissonance depends on our expectation and musi-
cal culture, which makes it difficult to evaluate [5]. In [6],
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several acoustic factors are isolated and the influence of
each one is evaluated separately.

Dissonance is closely related to another sensory concept,
roughness. Roughness applies both for music and natural
sounds, and occurs when two frequencies played together
produce a beating. According to Vassilakis and Kendall
(2010) [7], sensory dissonance is highly correlated to rough-
ness.

Various sensory dissonance models were proposed since
the middle of the 20th century. Based on Helmoltz’ theory,
Plomp and Levelt [1] conducted an experiment using pure
sine waves intervals. The result of this study is a set of dis-
sonance curves for a range of frequencies and for different
frequency differences. Sethares [8] gives a parametrization
of these curves, resulting in a computational model of dis-
sonance in several cases: for two or several sine waves of
different amplitudes, for one complex tone, for two notes
from the same timbre.

Vassilakis developed a more precise model which esti-
mates the contribution depending on the partial amplitudes
and the amplitude fluctuation [9]. This computational model,
including a specific signal processing method for extract-
ing the partials, is available online [10].

These models are closely connected, and revolve around
the same core concept of bandwidth and proximity of par-
tial frequencies. Other approaches have also been sug-
gested: see Zwicker and Fastl [11], or Kameoka and Kuriya-
gawa [12]

Schön [13] conducted an experiment in which listeners
rated the dissonance of a range of chords played on a pi-
ano. Dyads (chords with two notes) and triads (chords with
three notes) were played and listeners were asked to rate
the dissonance for each chord. The experiment showed
that dissonance is easy to rate with a rather high agreement
and thus could be considered as a relevant feature for de-
scribing music from a perceptual point of view [14]. The
rating data from [13] together with the data from [15] were
used in the current model.

Perceptual features of music, such as perceived disso-
nance, speed, pulse clarity, and performed dynamics have
received an increasing interest in recent years. They have
been studied both as a group ( [14,16,17]) and through ded-
icated models ( [18–20]). The trend has been towards data
driven architectures, foregoing the feature extraction step.
Another trend is that of ”deep layered learning” models in
MIR, as defined by Elowsson [21]. Such models use an in-
termediate target to extract a representation accounting for
the inherent organization of music. The strategy has been
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applied for, e.g., beat tracking [22] and instrument recog-
nition [23] in the past. In this study, we show how pitch
estimates from a previous machine learning model can be
reshaped and fed as input for predicting dissonance.

1.1 Overview of the article

In Section 2, we describe the two datasets and the process
for merging them. Section 3 is focused on the input repre-
sentation, detailing how it was extracted for each of the two
branches of the CNN. In Section 4, the design of the CNN
is described, as well as the methodology used for ensemble
learning and the parameter search. Section 5 presents the
evaluations methodology and the results. It also includes
a small ablation study and a comparison with a previous
model of dissonance. Section 6 offers conclusions and a
discussion of the results.

2. DATASETS

A total of 390 chords were gathered, coming from two dif-
ferent experiments [13, 15]. In these two experiments, the
listeners were asked to rate the dissonance of recorded pi-
ano chords. A definition of dissonance was given to the
listeners. In [15], the consonance was defined as “the mu-
sical pleasantness or attractiveness of a sound”. In partic-
ular, “if a sound is relatively unpleasant or unattractive, it
is referred to as dissonant”. In [13], the following defini-
tion was given: “dissonant intervals are often described as
rough, unpleasant, tense and unresolved”. Both definitions
referred to the unpleasantness of a sound. However, the de-
scription from [13] was more precise and already includes
the fact that only intervals were studied. The definitions
were close enough to give reason to believe that the same
feature was evaluated.

2.1 First dataset

The first dataset (D1) comes from the experiment conducted
in [13]. It contains 92 samples of 0.5 second each, created
with a sampled piano in Ableton Live. Two kinds of chords
were played, consisting of either two notes (dyads) or three
notes (triads). The dyads were either centered around mid-
dle C or one fifth above, ranging from unison to a major
tenth. The same process was used for the triads. In total,
the dataset contained 34 dyads and 58 triads.

Thirty-two listeners were asked to evaluate the sound from
“not dissonant at all” to “completely dissonant”, using a
web interface. The listeners’ musical background varied
but were mostly on an amateur level with an average prac-
tice time of 4 hours per week. The inter-rater reliability as
estimated by Cronbach’s alpha was 0.95.

2.2 Second dataset

The second dataset (D2) contains 298 sound examples [15].
Each sound example was recorded from a piano and has a
length of approximately 2 seconds. In this dataset, there
are 12 dyads, 66 triads and 220 tetrads (chords with four
notes). The frequencies were adjusted so that the mean of
the fundamental frequencies was middle C (263 Hz). The

pitches follow a just intonation ratio, differing from the
standard equal-tempered tuning used in D1. Thirty musi-
cally trained and untrained listeners from Vienna and Sin-
gapore rated all the examples. The inter-rater reliability as
estimated by the average intraclass correlation coefficient
(ICC) ranged from 0.96 to 0.99. The ratings were averaged
across all listeners.

2.3 Merged dataset

We used the average listener rating of dissonance of each
chord as a target for our experiment. In D1, the dissonance
ranged from 0 to 40, 40 being the most dissonant. In D2,
the dissonance ranged from 1 to 4, 1 being the most disso-
nant. Therefore, the ratings of the latter dataset were first
inverted by multiplication with -1. The listener ratings (A)
were then normalized according to

Anormalized =
A−min(A)

max(A)−min(A)
. (1)

.
After normalization, the most consonant chord had a rat-

ing of 0 and the most dissonant chord had a rating of 1.
The input data were also normalized. (See Section 3).

3. NETWORK INPUT

Two input representations were extracted from the audio
files: the constant-Q transform (CQT) spectrum and a pitch
chroma. These representations aim to catch different as-
pects of the audio file. The representation from the CQT
can capture spectral aspects of the audio, such as the dis-
tance between partials, whereas the pitch chroma repre-
sents the audio at a higher level corresponding (ideally) to
the actual notes that were played.

3.1 Pitch chroma

A pitch chroma was extracted from a Pitchogram represen-
tation, as illustrated in Fig. 1. To extract the pitch chroma,
the implementation from [24] was applied to the audio files
for first extracting a Pitchogram representation. This rep-
resentation has a resolution of 1 cent/bin across pitch and
a frame length of 5.8 ms. The Pitchogram was thresholded
at 2 to remove lower noisy traces of pitch. Then, a Hanning
window of width 141 was used to filter across pitch. In our
initial model, we then extracted activations across pitch at
semitone-spaced intervals (12 bins/octave). This gave un-
satisfying results, presumably due to the out-of-sync spac-
ing with the just intonation ratios chords in D2. There-
fore, pitch activations were instead extracted in intervals
of 25 cents (48 bins/octave), ranging between MIDI pitch
25 and 103. The mean activation across time for each pitch
bin was then computed, using activations from time frames
20-70. The output of this filtering will be referred to as the
pitch vector.

A pitch chroma vector, ranging an octave, was computed
from the pitch vector by taking the average activation wrapped
across octaves. Three chroma vectors were stacked across
pitch as shown in Fig. 1. The top 6 semitones and bot-
tom 6 semitones were then removed. This stacked pitch



Figure 1: The log-frequency spectrum, computed pitch
vector, and pitch chroma for three chords from dataset D2.
The chords are a dyad, a triad, and a tetrad. As shown, the
pitch tracking preprocessing accurately identify the funda-
mental frequencies. The three stacked pitch chroma oc-
taves are indicated with red rectangles.

chroma vector of size [1 × 96] will be referred to as the
pitch chroma in this paper.

3.2 Normalization of the inputs

For each music example i the pitch chroma and the CQT
were then normalized, using the same formula as in Sec-
tion 2.3:

Ai,normalized =
Ai −min(Ai)

max(Ai)−min(Ai)
. (2)

3.3 CQT vector

To extract a spectral input representation, the recordings
were processed with the built-in MATLAB function cqt,
which uses nonstationary Gabor frames (see [25], [26]).
This produced a spectrogram representation with logarith-
mically spaced frequency bins. We used 60 bins per oc-
tave, and the range of the CQT is six octaves, 80 Hz - 5.1
kHz. The mean magnitude across time was then computed
for each frequency bin, using only the first half of each au-
dio file (the second half of the audio file has a lesser con-
tribution from higher harmonics). The last preprocessing
stage was to compute the log magnitude of this mean:

CQTmean = 20 log10(CQT ). (3)

The resulting vector contains 360 values.

4. NETWORK DESIGN

4.1 Architecture

The architecture of the network is shown in Fig. 2.

Dense layer, 8 neurons

Figure 2: Architecture of the neural network

As shown, the CNN is a directed acyclic graph divided
into two branches, where one branch processes the input
from the CQT and the other branch processes the pitch
chroma representation.

The first layer in the CQT-branch was a convolutional
layer of size [20 × 3]. The kernel was designed to have
a width that covers at least two close partial peaks in the
spectrum. The aim of the layer is to capture the interac-
tions between peaks that are adjacent across frequency, as
this should convey roughness as outlined in Section 1.

The subsequent convolutional layer also had [3] filters,
but each filter had a width of one, therefore only extending
across depth. A max-pooling filter was then applied across
frequency to capture the most relevant partial interaction
in different bands. The max-pooling filter with a width 60
and no stride was then applied.

The branch processing the pitch chroma also had two
convolutional layers. The first layer operating across pitch
had a size of [49 × 7]. Since the edges were not padded
during processing, the processing shrinks the pitch chroma
to a width of 48, corresponding to pitches within the same
octave. This was followed by a layer of width 1 that ex-
tended across depth. A max-pooling filter of width 48 (the
full range) was then applied to each filter output. Up until
this processing stage, the chroma branch of the CNN has
operated in a pitch class equivariant way – the same oper-
ation has been applied to all pitch classes, with the pitch
class displacement intact across chroma (hence equivari-
ance and not invariance). Through the pooling operation
across chroma, the pitch class equivariance is transformed
into pitch class invariance. However, since the activations
after pooling will relate only to the intervals of concurrent
tones, the system is best defined as having a chord class in-
variant architecture. After max-pooling, the branches are
concatenated (see Fig 2) and passed to a dense layer with
8 neurons. The output layer consisted of a single neuron.

The activation functions after the CQT and the dense layer
were rectified linear units (ReLUs), and the activation func-



tions in the whole chroma branch were leaky ReLUs:

f(x) =

{
x x ≥ 0
0.2 x x < 0

(4)

The network was trained for 40 epochs, using the RMS
propagation optimizer and the mean square error as a loss
function.

4.2 Ensemble learning

We used ensemble learning, training multiple instances of
each network and averaging their predictions. A total of
five models were employed in the ensemble, all using the
same architecture but with varying random initialization
of their parameters. The random initialization of neural
networks will decorrelate the errors of the various mod-
els [27]. The average prediction from the different models
can then be expected to provide better estimates than when
randomly choosing one of them [28]. A similar strategy
has been used before for training a model to predict per-
ceived performed dynamics in music [20].

4.3 Parameter search

A wide range of possible settings was tried with a parame-
ter sweep. For each setting, a model was trained and eval-
uated with 5-fold cross-validation.

The explored parameters, with tested parameter varia-
tions in parenthesis, were: the size of the kernel for the
filter operating on the CQT (20 - 10 - 30), the number of fil-
ters for the first convolutional layer operating on the CQT
and pitch chroma (6 - 7 - 8 for the CQT and 2 - 3 - 4 for the
pitch chroma), the pooling size for the CQT branch, and
the number of neurons in the dense layer (7 - 8 - 9). The
pooling size of 60 was chosen, which corresponds to the
range of an octave.

We also tried to include an additional feature inserted at
the dense layer, which indicated the dataset of each chord
example (1 or 2). This feature did not improve the perfor-
mance of the network, and thus it was not kept.

5. RESULTS

5.1 Train and Test conditions

As there were only few data available, the system could
easily overfit. To compensate for this lack of data, cross-
validation was implemented, and the two datasets were
also combined. These two techniques aim at adding va-
riety in the learning set.

Thus, different methods were used to evaluate the perfor-
mance of the network:

• A – Cross-validation on both datasets combined.

• B1 – Cross-validation within dataset D1.

• B2 – Cross-validation within dataset D2.

• C – Train on dataset D2 and test on dataset D1.

We used 10-fold cross-validation for A, B1 and B2, split-
ting the datasets into ten folds (nine folds for training and
one fold for validation).

For the evaluation C, the system was trained with the
dataset D2 and evaluated on the dataset D1. Given that the
two datasets have rather different characteristics (timbre,
tuning, and number of notes in the chords) this evaluation
condition is more challenging. Since the dataset D1 con-
sists of so few examples, the opposite evaluation condition
(train on D1, evaluate on D2) was not explored.

The metric used to compare the prediction and the rated
dissonance was the coefficient of determination, R2, com-
puted as the squared Pearson correlation coefficient, in-
cluding an intercept.

Confidence intervals (95 %) were computed, based on the
variation in results between different test runs. The 5 test
runs were then sampled with replacement 10000 times and
the distribution of mean correlations calculated.

5.2 Main Results

The coefficient of determination R2 across the different
test conditions (A, B1, B2, and C) are shown in Table 1.

Test condition Average R2 95 % CI
A 0.631 0.622 - 0.634
B1 0.612 0.590 - 0.634
B2 0.644 0.621 - 0.665
C 0.583 0.561 - 0.600

Table 1: Coefficient of determination R2 for the different
test conditions, including 95% confidence intervals com-
puted across the different test runs.

The predicted dissonance with respect to the target value
for each music example is plotted in Fig. 3. Each point in
this figure corresponds to the value of dissonance for one
music example. The x-coordinate of the point is the target
value of dissonance and the y-coordinate is the prediction
of dissonance. For each test condition, the predictions of
five different test runs (respectively called prediction 1 - 5
in the figure) are shown.

The cross-fold validation for each dataset gives compa-
rably good results. The test on D2 gives better results,
which could be explained by the number of sample in each
dataset: D2 has four times more sample than D1.

The cross-fold validation when combining both datasets
yields better results than cross-fold validation for every
single dataset. When combining both datasets, the network
has a few more examples to train on. This also adds a lot a
variety in the training sets, given all the differences listed
before. The size of D2 added with D1 is not very different
than the size of D2, but the performance in A is signifi-
cantly better than in B2. This may indicate that by adding
variety in the training set, the network learns much better.

The test C1 is the only test in which the network learns
on only one dataset, and this configuration gives the worse
performance. Presumably, the network overfits on D2 and
cannot generalize well enough in order to predict better the
values from D1.
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Figure 3: Predictions in relation to ground truth annota-
tions for the different test conditions

Test Condition Average R2 95 % CI
Network using only the pitch chroma
A 0.618 0.610 - 0.624
B1 0.641 0.629 - 0.649
B2 0.628 0.620 - 0.633
C 0.607 0.589 - 0.625

Network using only the CQT vector
A 0.417 0.409 - 0.426
B1 0.304 0.281 - 0.327
B2 0.460 0.439 - 0.484
C 0.180 0.139 - 0.221

Table 2: Coefficient of determination R2 for the network
with only one input: CQT or pitch chroma, including
95% confidence intervals computed across the different
test runs.

5.3 Contribution from each input source and branch

In order to evaluate the importance of the pitch chroma
and CQT vector for performance, we also ran the full ex-
periment using only the pitch chroma in a single branch or
only the CQT vector in a single branch. Other than this,
the same settings were used during training, and the same
metric used for testing. The results are shown in Table 2.

Using pitch chroma as the only input consistently gave
better results than when only using the spectral input from
the CQT. Furthermore, the pitch chroma had better results
than the combined main model (reaching outside of the
95 % CIs) for test conditions B1 and C. The CQT vec-
tor had particularly low results for test condition C. This
condition tests the ability of the architecture to generalize
since the system is trained on one dataset and tested on
another with, presumably, different characteristics pertain-
ing to, e.g., timbre. The results confirms that the deep-
layered learning approach to MIR [21], in this paper using
transfer learning of equivariant feature maps, can yield sig-
nificantly better results than end-to-end learning for small
datasets.

5.4 Comparison with a Computational Model

In this section, comparison of the performances of the sys-
tem with a state of the art model is presented. The most
recent model was proposed by Vassilakis [9] and does not
use machine learning. It was already implemented as the
function mirroughness in the MIR toolbox [29], which
is the implementation we used for the comparison.

With this function, a dissonance value is given for each
unit of time, which was not directly comparable with the
single value given by the listeners. Considering that a hu-
man listener would not take the length of the recording into
account, we chose to take the mean of the five highest val-
ues.

With this method, a dissonance value was computed for
each music example. The squared correlation coefficient
was then computed between this dissonance and the target
dissonance. The results are shown in Table 3.



The R2 score obtained here is lower than the performances
obtained in the article presenting the model [9]. This could
be explained by the fact that the computational model was
tested and adapted to synthetic sine waves, whereas the au-
dio files in this experiment came from a sampled piano.
The timbre of the piano presumably increases the complex-
ity of the sound and reduce the accuracy of the model.

Dataset R2

D1 0.17
D2 0.34

Table 3: Coefficient of determination R2 for the computa-
tional model for each dataset

6. CONCLUSION AND DISCUSSION

A model using a convolutional neural network was devel-
oped for predicting the dissonance in recordings of piano
chords. The model achieved better results than previous
computational models, even though there were few sam-
ples in the datasets.

The two datasets differ in at least four ways:

• The chords were played with two different piano mod-
els, producing differences in, e.g., timbre.

• One dataset was performed with equal-tempered chords,
and one with just intonation ratio. The model, there-
fore, had to handle micro-tuning deviations and how
they affect dissonance.

• One main difference is the polyphony level of the
chords: D1 has no tetrads whereas these constitute
more than two-thirds of D2.

• The two datasets were rated by two different groups
of listeners. Therefore, it can be expected that ran-
dom variations between preferences in the two groups
gave annotations that varied in complex ways.

We conclude that the tests validate the potential of inter-
mediate targets accounting for the inherent organization of
music. The ”deep layered learning” approach [21] using
only the pitch chroma branch gave significantly better re-
sults than when using only the spectral CQT vector branch.
In particular, a comparison between the results for test con-
dition B2 and C underlines the pitch chroma-only model’s
high generalization capability. The R2 only fell slightly
(0.628 – 0.607 = 0.021) when testing on an unseen dataset
instead of using cross-validation. For the main model with
both branches, the results fell more between these test con-
ditions (0.644 – 0.583 = 0.061).

During development, we tested a few different architec-
tures, with fewer learnable parameters in total, but those
architectures gave lower results. It seems like the archi-
tecture allowed for a fairly high amount of learnable pa-
rameters in relation to the low number of ground truth data
points.

In future work, a wider range of architectures could be
tried, reflecting insights gained from the small ablation study.
The pitch chroma branch can be designed as the only branch,
exploring improvements related to, e.g., pitch resolution,
depth, and pooling. A related study [30] has showed that
it possible to compute several chroma within the network
instead of as a preprocessing step, each chroma focusing
on different octaves. That study also indicated that average
pooling across octaves for key-class invariance can give
better results than max-pooling. It could be useful to ana-
lyze the weights in the kernel on the trained network. This
could make it easier to understand the characteristics se-
lected by the network. The network could also be trained
with a much bigger dataset, using several repetitions of the
same chord class or using chords from higher and lower
octaves.
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