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ABSTRACT

Playing techniques such as ornamentations and articula-
tion effects constitute important aspects of music perfor-
mance. However, their computational analysis is still at
an early stage due to a lack of instrument diversity, estab-
lished methodologies and informative data. Focusing on
the Chinese bamboo flute, we introduce a two-stage glis-
sando detection system based on hidden Markov models
(HMMs) with Gaussian mixtures. A rule-based segmen-
tation process extracts glissando candidates that are con-
secutive note changes in the same direction. Glissandi are
then identified by two HMMs. The study uses a newly cre-
ated dataset of Chinese bamboo flute recordings, including
both isolated glissandi and real-world pieces. The results,
based on both frame- and segment-based evaluation for as-
cending and descending glissandi respectively, confirm the
feasibility of the proposed method for glissando detection.
Better detection performance of ascending glissandi over
descending ones is obtained due to their more regular pat-
terns. Inaccurate pitch estimation forms a main obstacle
for successful fully-automated glissando detection. The
dataset and method can be used for performance analysis.

1. INTRODUCTION

Computational analysis of expressive patterns in music sig-
nals plays an important role in music information research.
For instrumental music, these expressive patterns are fre-
quently the result of playing techniques. Automated analy-
sis of playing techniques can benefit automatic music tran-
scription [1], computer-aided music pedagogy [2], instru-
ment classification [3, 4], and performance analysis [5].
However, computational analysis of playing techniques is
still in its early stages, lacking instrument diversity, estab-
lished methodologies, and informative data.

Most existing work on computational analysis of playing
techniques focuses on Western instruments such as gui-
tar [6–8], violin [9–11], piano [12], and drums [13, 14].

C. Wang is funded by the China Scholarship Council (CSC). E. Bene-
tos is supported by a UK RAEng Research Fellowship (RF/128).

Copyright: c© 2019 Changhong Wang, Emmanouil Benetos, Xiaojie Meng, Elaine

Chew. This is an open-access article distributed under the terms of the ma-

genta Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Playing techniques in non-Western instruments, while sim-
ilarly important, are often overlooked. Take for example,
one of the world’s most ancient instruments, the Chinese
bamboo flute (also known as the Dizi or Zhudi, thereafter
referred to as CBF): many listeners are most often cap-
tivated by its unique timbre, which belies the twenty or
more playing techniques invoked when performing on the
instrument. To our knowledge, only Ayers [15, 16] has
done some analysis of CBF playing techniques through
synthesis. This work focused only on trills, tremolos and
flutter-tongue. But many other techniques remain to be ex-
plored. For the case of other non-Western instruments, lim-
ited computational work can be found [5, 17].

For playing technique detection, methods adopted in the
literature are typically frame-wise classifiers based on high
dimensional feature inputs [6,18], with little explanation of
why the methods work. Support vector machines (SVMs)
are the most frequently used class of methods. A series of
electric bass guitar playing techniques was classified into
plucking or expressive styles using SVMs in [6]; [10] ap-
plied it to distinguish five fundamental guitar playing tech-
niques. A multimodal input using SVMs was used for
analysing piano pedalling techniques in [12]. Su et al. [11]
proposed new features as input to an SVM based on sparse
modeling of magnitude and phase-derived spectra before
classifying violin playing techniques. Other work used dy-
namic time warping [19], COSFIRE filters [20], spectro-
gram templates [21], and filter diagnoalisation method [22]
for analysis of playing techniques.

Datasets used in playing technique research consist of
mainly playing techniques performed in isolation. Isolated
techniques can vary greatly from the same techniques used
in live performance. For ecological validity, we argue that
playing techniques should be collected in context. A chal-
lenge of obtaining playing technique examples in real-world
settings is that some techniques may be rare. Thus, it may
be hard to find pieces covering a wide range of playing
techniques and with sufficient repeated instances of these
techniques to obtain a variety of samples for a specific
technique.

To address these limitations, we use the CBF as our in-
strument of choice and glissando, a rarely explored au-
dio gesture in the literature, as our starting point, aim-
ing to build a systematic methodology for automatically
analysing playing techniques. Glissando, here refers to a
rapid slide up or down the musical scale [23], which is not
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Figure 1. Spectrogram of two ascending and two descend-
ing glissando examples in Chinese bamboo flute music.

comparable to the one defined as a continuous slide from
one note to another in [24]. Fig. 1 shows a spectrogram
of a series of two ascending and two descending CBF glis-
sandi. As can be seen, they exhibit a readily recognisable
pattern, resembling rapid scale segments. Glissando de-
tection in CBF playing is not straightforward: CBF glis-
sandi are less regular than the stair-like glissando patterns
in piano and guitar playing [18]. For the same glissando
type, variations exist in the ways they are executed be-
tween different players, different pieces, and even differ-
ent parts of the same piece. The main characteristic of
glissando is the consecutive note change, which we claim
can be captured by latent states of a hidden Markov model
(HMM) [25, 26]. HMMs enable the decoding of note evo-
lution while smoothing outlier variations within performed
glissandi.

In this paper, we make a first attempt to the computational
analysis of CBF glissandi. A new dataset including both
isolated glissandi and real-world pieces is created and is
being prepared for public release. Based on the analysis of
ground truth statistics, we propose a two-stage detection
system. A rule-based segmentation process first extracts
glissando candidates that are consecutive note changes in
the same direction. Different from traditional binary clas-
sification, the false positives obtained in the segmentation
stage, which exhibit similar pitch evolution and duration as
the ground truth, are used to train a non-glissando HMM
(NG-HMM). A glissando HMM (G-HMM) is trained us-
ing all ground truth glissandi in the training set. Glissandi
are then identified by two HMMs at test time.

2. DATASET

2.1 Dataset Information

The glissando analysis dataset, CBF-GlissDB, comprises
recordings by ten expert CBF players from the China Con-
servatory of Music. All data is recorded in a professional
recording studio using a Zoom H6 recorder at 44.1kHz/24-
bits. Each player performs both isolated glissandi cover-
ing all notes on the CBF and one full-length piece—Busy
Delivering Harvest �扬鞭催马运粮忙� or Morning �早

晨�. Players are grouped by flute type (C and G, the most
representative types for Southern and Northern styles, re-
spectively) and each player uses their own flute. Details of

recording length and number of glissandi in each group are
shown in Table. 1.

Players Flute
Isolated glissandi Whole-piece recordings

Length
(mins)

#glissandi
[↑, ↓]

Piece, style
Length
(mins)

#glissandi
[↑, ↓]

1-3 C 2.4 [58,47] Morning, Southern 16.0 [24,0]

4-10 G 5.0 [117,112]
Busy Delivering

Harvest, Northern
28.0 [23,106]

Table 1. Dataset information.

In order to assess the performance of the proposed glis-
sando detection system independent of the performance of
pitch estimation methods, pitch ground truth for all record-
ings is created. The fundamental frequency of each record-
ing is first estimated using the pYIN algorithm [27] due to
the strictly monophonic property of the recordings. All er-
rors are then manually corrected by the first author using
Sonic Visualiser 1 . Both isolated and performed glissandi
are annotated and verified by the players on the score. The
final annotation is created by the first author after consult-
ing with the players.

2.2 Dataset Statistics

To verify the intuition of the difference between isolated
and performed glissandi, characteristic statistics of the gro-
und truth are calculated. Fig. 2 shows two-dimensional
histograms for four types of glissandi in CBF-GlissDB: as-
cending and descending isolated glissandi; and ascending
and descending performed glissandi. As can be seen, per-
formed glissandi have shorter durations than isolated glis-
sandi, especially for descending glissandi, performed ones
have almost half duration as isolated ones. Further analysis
of note durations within each glissandi shows little differ-
ence among isolated glissandi while ascending performed
glissandi have larger variation than descending performed
ones. This may be attributed to the performers’ tendency
to lengthen the start or end note in an ascending performed
glissando.

3. METHOD

To automatically detect glissando from real-world CBF re-
cordings, we propose a two-stage detection system based
on rule-based segmentation (Sec. 3.1) and HMM-based iden-
tification (Sec. 3.2).

3.1 Rule-based Segmentation

To obtain glissando candidates from the whole-piece record-
ings, we introduce a rule-based segmentation component
using pitch with a 20ms hop size as input, as demonstrated
in Fig. 3. The pitch is first smoothed to exclude noisy vari-
ations and quantised to the nearest notes in 12-tone equal
temperament scale, resulting in 16 notes in the CBF tonal

1 https://www.sonicvisualiser.org

https://www.sonicvisualiser.org
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(a) 175 ascending-isolated glissandi
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(b) 159 descending-isolated glissandi
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(c) 47 ascending-performed glissandi
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Figure 2. Duration and note number histograms for four
glissando types.

range: G4-A6 for the C flute, and D5-E7 for the G flute
(we assume that flute types are known for the current sys-
tem). Frames with pitch less than 250Hz and waveform
amplitude less than -20dB are marked as silence. The sign
of note change is extracted to represent note change di-
rection. Consecutive note changes in the same direction
are then extracted as glissando candidates, which are fur-
ther pruned by constraints on note numbers (at least 4 for
both ascending and descending glissandi) and duration (at
least 0.2s for ascending glissandi and 0.15s for descending
glissandi based on the consultations with the professional
players).

3.2 HMM-based Identification

3.2.1 Feature Extraction

Since all glissando candidates (extracted in the previous
stage) share similar pitch evolution characteristics, the in-
put to the HMMs must possess sufficient discriminative
power to distinguish glissandi from non-glissandi. Con-
sidering the pitch discreteness and long duration of glis-
sandi, we use a feature set consisting of both short-term
(average pitch change, average intensity, average intensity
change) and long-term (note number, note duration, note
range) features [28, 29]. All features are statistics (mean
and standard deviation) of pitch and intensity with varia-
tions on window and hop sizes. Hop size variations range
from 10ms to 20ms at intervals of 2ms, while window sizes
depend on the glissando direction.

(i) Short-term features:

To capture pitch and intensity change, the short-term
window varies from 100 to 200ms at intervals of
20ms for the following three features.

– Average pitch change:

∆pi =
1

w

w∑
k=1

[
pi(k)− pi−1(k)

]
, (1)

Figure 3. Diagram of rule-based segmentation
(AG=ascending glissando; DG=descending glissando).

where pi(k) is the k-th pitch value within the win-
dow centered at the i-th time frame, and w is the
window length.

– Average intensity (amplitude in dB scale) [7]:

Ii =
1

w

w∑
k=1

[
20 · log10Ai(k)

]
, (2)

where Ai(k) is the amplitude of the k-th sample
within the window centered at the i-th time frame,
and Ii is average intensity of this window.

– Average intensity change: ∆Ii = Ii − Ii−1.

(ii) Long-term features:

To capture the discreteness of pitch evolution, note-
level features with long windows are calculated. The
window sizes vary from 200 to 400ms at intervals of
50ms for descending glissandi with shorter duration,
and from 200 to 600ms at the same intervals for as-
cending glissandi which have longer duration. The
calculation process for one ascending glissando ex-
ample is shown in Fig. 4. With a 400ms window slid-
ing forward, the number of notes N is 8 (one more
than the number of peaks, highlighted by the red cir-
cles) and note range (note change between start and
end notes) R equals 7. Note durations D, which re-
fer to the intervals between two note change peaks,
are {80,40,60,40,40,60}ms.

3.2.2 HMM-based Identification

As shown in Fig. 5, two HMMs with Gaussian mixture
emissions are trained on the training set, with k-means ini-
tialisation and iterative parametrisation by the Expectation-
Maximization algorithm [30]. During the training process,
model parameters—the number of HMM latent states, num-
ber of Gaussian mixture components, and window-hop sizes
—are varied and the model with the best performance on



Figure 4. Long-term feature calculation process based on
one example of an ascending glissando.

the validation set is chosen as the final one for testing. The
emission used is a Gaussian mixture distribution [30]:

p(xi|π,µ,Σ) =

M∑
m=1

πmN (xi|µm,Σm), (3)

where xi is the observed feature vector of the i-th frame;
πm, µm and Σm are the prior, mean and covariance of the
m-th mixture component; and π,µ,Σ are the model pa-
rameters, each of which is an M -dimensional vector cor-
responding to πm, µm, and Σm.

The CBF-GlissDB is subdivided into three subsets, namely,
training (all isolated glissandi and 6 whole pieces), valida-
tion (2 whole pieces), and test (2 whole pieces). The seg-
mentation stage is applied to whole-piece recordings in all
three subsets, but to different ends. For the training set,
segmentation serves the purpose of obtaining false posi-
tives that are then used to train a NG-HMM. In the valida-
tion and test stages, the extracted segments serve as candi-
dates to be assigned glissando (G) or non-glissando (NG)
labels by comparing the log-likelihood calculated by the
two HMMs. Since the HMMs are applied directly to the
candidate segments, the absolute position of glissandi in
the pieces does not influence the result. The ten whole-
piece recordings are randomly allocated to the training,
validation, and test sets in a 6:2:2 ratio at the beginning of
experiment. A five-fold cross-validation is then conducted.

4. EVALUATION

To investigate the influence of automatic pitch estimation
on glissando detection, evaluation of both a semi-automated
system (using the pitch ground truth as input) and a fully-
automated system (using pitch automatically estimated by
pYIN [27] as input) is carried out. Because glissando length
ranges approximately from 200 to 1100ms, for each sys-
tem, frame-based and segment-based evaluations are im-
plemented. The frame size used in frame-based evalua-
tion is 20ms. Segment-based evaluation compares detected
glissandi and ground truth in short-time, non-overlapping
segments [31]. A segment length of 100ms is adopted.
True positives are segments which have overlaps with both

Figure 5. System diagram for glissando detection
(G=glissando; NG=non-glissando).

ground truth and detected glissandi; false positives seg-
ments overlaps only with detected glissandi; and, false neg-
atives intersect with ground truth only.

4.1 Semi-automated System Evaluation

Table 2 gives the precision, recall, and F-measure results
for both ascending and descending glissandi in the semi-
automated detection system. As can be seen, the segmen-
tation stage performs a conservative selection of candidate
segments with high recall and low precision. The large
number of false positives obtained for NG-HMM training
benefits the data balance in our system. The better identi-
fication performance of ascending glissandi over descend-
ing ones can be attributed to their more regular patterns.
As can be seen, the identification F-measure increased by
approximately 60% as compared to the segmentation F-
measure, which verifies our intuition that consecutive pitch
evolution can be captured by HMMs.

Stage
Glissando
direction

Frame-based (%) Segment-based (%)
P R F P R F

Rule-based
segmentation

Ascending 3.1 93.4 5.9 3.1 92.8 6.0
Descending 4.9 83.1 9.0 5.1 86.9 9.9

HMM-based
Identification

Ascending 73.4 75.4 73.4 72.0 74.0 72.0
Descending 65.4 67.6 63.2 64.4 70.2 64.2

Table 2. Evaluation results of the semi-automated
glissando detection system based on annotated pitch
(P=precision, R=recall, F=F-measure).

4.2 Fully-automated System Evaluation

After verifying the proposed glissando detection method
independently, we then use the automatically estimated pit-



ch to evaluate the fully-automated glissando detection sys-
tem. Due to the influence of breathing, some parts in the
CBF recordings have high intensity but no detected pitch.
Thus silence cannot be determined only by pitch presence,
and we define silence bits as parts having both no pitch
and intensity below -20dB. Correctly detected frames are
the voiced parts with pitch intervals less than half a semi-
tone between the ground truth and the detected pitch. Pitch
estimation accuracy refers to the percentage of correctly
detected frames over all voiced frames. Table 3 shows
the estimated pitch result of both whole-piece recordings
and ground truth glissando segments within these pieces.
The poorer pitch estimation performance on glissando seg-
ments shows that pYIN works less well on rapid pitch evo-
lution progressions.

Type
Whole pieces Glissando segments

Southern Northern Ascending Descending

Accuracy (%) 80.2 79.5 72.0 74.8

Table 3. Pitch estimation accuracy for whole-piece record-
ings and glissando segments.

The fully-automated glissando detection results are shown
in Table 4. Considering the pitch evaluation shown above,
it is reasonable to expect worse performance when using
automatically estimated pitch as input. Pitch is a main
discriminative feature in the proposed glissando detection
system. The presence of undetected pitches or octave er-
rors within glissandi hinders G-HMM to capture the con-
secutive note evolution. Thus false positives, which exhibit
similar pitch evaluation as the ground truth glissandi and
have higher pitch estimation accuracy, may be assigned
with G labels. This is verified by the better identification
performance on descending glissandi over ascending ones
with lower pitch estimation result.

Stage
Glissando
direction

Frame-based (%) Segment-based (%)
P R F P R F

Rule-based
segmentation

Ascending 2.1 84.8 4.1 2.1 86.2 4.4
Descending 3.3 67.3 5.9 3.6 75.0 7.1

HMM-based
identification

Ascending 36.4 63.2 44.6 36.8 63.4 45.0
Descending 58.2 48.4 50.4 58.0 51.8 52.6

Table 4. Evaluation results of the fully-automated glis-
sando detection system based on estimated pitch.

5. CONCLUSIONS

In this paper, we have described a first attempt at compu-
tational analysis of CBF glissandi. HMMs are introduced
to decode the consecutive note evolution within glissandi
and a two-stage detection system is proposed. Using in-
puts based only on the statistics of two low-level features—
pitch and intensity, frame- and segment-based F-measures
of 73.4% and 72.0% for ascending glissandi, and 63.2%

and 64.2% for descending glissandi, are obtained in a semi-
automated detection system, which confirms the feasibility
of our method for glissando detection. The poorer perfor-
mance of the fully-automated system may be attributed to
the inaccuracy of pitch estimation since pitch is the main
discriminative feature.

Future work will seek to implement other state-of-art pitch
estimation methods (for example, CREPE [32]) to improve
pitch detection accuracy prior to glissando detection. More
informative features for glissando description may be ex-
plored. Alternative methods for glissando identification
will be investigated, such as template-based detection, the
spiral scattering transform [33], and deep learning, the lat-
ter including data augmentation of the collected audio sam-
ples. Plans are underway for expansion of the dataset. The
analysis will also be expanded to other CBF playing tech-
niques, with the aim to develop a systematic methodology
for CBF playing technique detection.
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