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ABSTRACT

In this paper, we build upon a recently proposed deep
convolutional neural network architecture for automatic
chord recognition (ACR). We focus on extending the com-
monly used major/minor vocabulary (24 classes) to an ex-
tended chord vocabulary of seven chord types with a to-
tal of 84 classes. In our experiments, we compare joint
and separate classification of the chord type and chord root
pitch class using one or two separate models, respectively.
We perform a large-scale evaluation using various com-
binations of training and test sets of different timbre com-
plexity. Our results show that ACR with an extended chord
vocabulary achieves high f-scores of 0.97 for isolated chord
recordings and 0.66 for mixed contemporary popular mu-
sic recordings. While the joint ACR modeling leads to the
best results for isolated instrument recordings, the sepa-
rate modeling strategy performs best for complex music
recordings. Alongside with this paper, we publish a novel
dataset for extended-vocabulary chord recognition which
consists of synthetically generated isolated recordings of
various musical instruments.

1. INTRODUCTION

Automatic chord recognition (ACR) has been actively re-
searched in the field of Music Information Retrieval (MIR)
during the last 20 years. ACR algorithms are an essen-
tial part of many music applications such as music tran-
scription systems for automatic lead-sheet generation, mu-
sic education and learning applications, as well as music
similarity and recommendation algorithms. In music prac-
tice, chord sequences can be played as different chord voic-
ings (selection and order of chord tones) on a large variety
of musical instruments, each with its own unique sound
characteristic. Therefore, the biggest challenge in ACR is
to extract the predominant harmonic changes in a music
signal while being robust against different instrument tim-
bres. Furthermore, tuning deviations of music recordings
as well as inherent ambiguities between different chords
can complicate the task even more [1]. In general, ACR is
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approached as a two-step problem. First, the acoustic mod-
eling step deals with the prediction of chord labels from
short-term audio signal frames. Secondly, during the tem-
poral modeling step, post-processing algorithms are ap-
plied to merge frame-level predictions to longer segment-
level chord annotations.

As the first main contribution of this paper, we investigate
the under-explored task of recognizing seventh chords as
an extension to commonly used major and minor chords.
Most previous publications focus on recognizing the 24
possible major and minor chords. In the
extended-vocabulary ACR scenario, we investigate 7 dif-
ferent chord types including four seventh chord types and
the power-chord, which leads to a total of 84 classes.
Throughout this paper, we solely focus on improving the
acoustic modeling for ACR and do not apply any temporal
modeling algorithms. As a second contribution, we com-
pare joint and separate modeling of the chord root pitch
class and the chord type as two possible strategies for ACR
which are described in Section 3.2. Finally, we publish a
novel dataset alongside with this paper that includes syn-
thetically generated chord sequences of the investigated 7
different chord types played with different chord voicings
on various keyboard and guitar instruments. 1

2. RELATED WORK

Early algorithms for acoustic modeling in ACR use tem-
plate matching in chromagram representations, which en-
code the local saliency of different pitch classes in audio
signals [1, 2]. Here, musical knowledge about the inter-
val structures in different chord types is used to design
chord templates for template matching algorithms. We re-
fer the reader to [3] for a systematic overview over tradi-
tional techniques for feature extraction and pattern match-
ing in ACR systems and the importance of pre-processing
and post-processing steps.

In contrast, fully data-driven approaches based on deep
neural network architectures have been lately shown to out-
perform hand-crafted feature representations. For instance,
Convolutional Neural Networks (CNN) [4], Recurrent Neu-
ral Networks (RNN) [5, 6], and Feed-Forward Neural Net-
works (DNN) [7] are used as the acoustic modeling part.
Most CNN-based approaches follow the VGG-style archi-
tecture [8] with a sequence of 2D convolutional layers and

1 The dataset can be accessed at https://www.idmt.
fraunhofer.de/en/business_units/m2d/research.
html.
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max pooling layers for a gradual down-sampling in the
time-frequency space. Common time-frequency represen-
tations such as Short-time Fourier Transform (STFT) [9],
Constant-Q transform (CQT) [4] or its multi-channel ex-
tension Harmonic CQT [10] are used as two-dimensional
input to the CNN models.

As we focus on the acoustic modeling in ACR algorithms,
we only briefly review temporal modeling techniques here.
The first approaches for temporal modeling in ACR sys-
tems have used techniques from automatic speech recog-
nition such as Hidden Markov models (HMMs) [11, 12].
Recently, Korzeniowski & Widmer use RNN-based chord
language and duration models as post-processing after a
CNN-based acoustic model [13]. Wu & Li combine a bi-
directional Long Short-Term Memory (LSTM) network for
sequence modeling and Conditional Random Field (CRF)
to infer the final chord label sequence [10].

In real-life music recordings, the occurrence of different
chord types is heavily imbalanced. While major and mi-
nor chords make up the bulk of annotated chords in avail-
able chord recognition datasets, other chord types such as
seventh chords are heavily underrepresented. Hence, it
becomes hard to train ACR systems to detect such chord
types. If ACR algorithms should for instance be used to
analyze jazz-related music styles, it becomes mandatory
to extend the chord vocabulary by seventh chords. Only
a few publications such as [10, 14–16] focus on extended-
vocabulary chord recognition and go beyond the common
24 class major/minor chord vocabulary. In order to facili-
tate training models for the extended-vocabulary ACR, we
created and published a novel dataset for large-scale chord
recognition which will be detailed in Section 4.2.

3. SYSTEM OVERVIEW

3.1 Input Features

Audio signals with a sample rate of 44.1 kHz are con-
verted into Short-time Fourier Transform (STFT) magni-
tude spectrograms using a blocksize of 8192 (186 ms), a
hopsize of 4410 (100 ms), and a Hann window. The phase
is discarded. Using a triangular filterbank, the spectrogram
is mapped to a logarithmically-spaced frequency axis with
133 frequency bins and a resolution of 24 bins per octave
as in [9]. Logarithmic magnitude compression is used to
increase the invariance to dynamic fluctuations in the mu-
sic signal. Spectral patches are extracted with a blocksize
of 15 (1500 ms) and a hopsize of 4 (400 ms) and fed as
two-dimensional input to the CNN model.

3.2 Modeling Strategies & Network Architecture

Figure 1 shows the CNN model architecture, which we
adopted from [9]. As shown in Figure 2, we compare two
modeling strategies for ACR: In the first strategy (S1), we
aim to directly classify the chord label and use a single-
output model. Depending on the chord vocabulary size,
the final dense layer has either 24 units for classifying ma-
jor & minor chords or 84 units for classifying all 7 chord
types listed in Table 1 given all possible 12 chord root pitch
classes. In the second strategy (S2), we predict the chord

Abbreviation Chord Type (# Chord Tones)
5 “Power-chord” (2)
maj Major chord (3)
min Minor chord (3)
maj7 Major-seventh chord (4)
min7 Minor-seventh chord (4)
dom7 Dominant-seventh chord (4)
m7b5 Half-diminished seventh chord (4)

Table 1. Investigated chord types with the corresponding
number of chord tones.
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Figure 1. Architecture of the applied CNN. Number of
filters and the kernel size are given in brackets for each
ConvBlock. The softmax activation function is used in the
final dense layer.

CNN	Model Chord Label	
(24	 or 84	classes)

CNN	Model
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Chord Type	
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Figure 2. Illustration of two modeling strategies S1 and S2
for joint and separate chord type & root pitch class estima-
tion.

root pitch class (12 classes) and chord type (2 or 7 classes)
using two separate models. In both scenarios, the final
dense layers have a softmax activation function and after



Dataset # Files Duration
(h)

# Chord
Segments

Bs Beatles 1152 53.1 86868
Qn Queen 180 11.2 20610
RW Robbie Williams 234 19.1 25569
RWC RWC 900 61.0 110331
Os Osmalsky 7200 3.8 7200
Combi7 Combined Dataset 1863 112.2 193194
ISGuitar IDMT SMT GUITAR 48 32.1 684
ISChords IDMT SMT CHORDS 16 4.1 7398
ISInhouse IDMT Inhouse Dataset 111 4.9 9159

Table 2. Overview of all chord recognition datasets with
the respective number of audio files, the total duration in
hours, as well as the number of chord segments.

each convolutional layer batch normalization [17] and a
rectified linear unit (ReLU) activation function is applied.
During training, we use the categorical cross-entropy loss,
500 training epochs with early stopping, the Adam opti-
mizer [18] with a learning rate of 0.003, and a batch size of
256. The input features were normalized to zero-mean and
unit-variance for the whole training set. The normalization
values were later applied to the test data. All experiments
were conducted using the Keras framework with Tensor-
flow as backend. 2

4. DATASETS

4.1 Existing Datasets

The datasets used in this paper are summarized in Table 2.
In addition to the total number of files, Table 2 provides the
total dataset duration and total number of chord segments.
In order to enlarge the dataset, we use pitch-shifting with
total shifts of up to 4 semitones upwards and downwards
as data augmentation technique. Hence, each original file
results in 9 augmented files including the original record-
ing. The datasets Beatles (Bs) [19], Queen (Qn) [19], Rob-
bie Williams (RW) [20], RWC (100 songs from the RWC
Popular Music Database [21]), and Osmalsky (Os) [22]
have been used in the chord recognition literature previ-
ously. While the first four datasets include mixed music
recordings with multiple instruments, the Os as well as the
ISGuitar dataset (excerpts from the
IDMT SMT GUITAR database published in [23]) consist
of isolated recordings of different instruments playing
chords. We created and published a novel dataset for chord
recognition research (IDMT SMT CHORDS, abbreviated as
ISChords in this paper), which will be detailed in the
following section 4.2. The ISInhouse dataset is an in-
house dataset covering various pop and rock music record-
ings, which cannot be published due to copyright
constraints. In order to evaluate our model on music mix-
tures for the task of extended-vocabulary ACR, we aggre-
gated an additional dataset (Combi7) using files which in-
clude seventh chord annotations from the datasets
Bs, Qn, RWC, RW, and Os.

2 Keras: keras.io, Tensorflow: www.tensorflow.org

Dataset maj min maj7 min7 5 dom7 m7b5
Bs 67.95 20.49 2.17 3.00 0.04 6.12 0.22
Qn 63.81 22.52 1.28 4.47 1.28 6.56 0.09
RW 69.64 28.30 0.36 0.50 0.89 0.32 -
RWC 48.09 26.57 5.94 13.25 - 5.87 0.28
Os 60.00 40.00 - - - - -
Combi7 53.24 25.20 4.65 9.75 0.19 6.71 0.27
ISGuitar 67.89 16.51 4.59 3.67 - 5.50 1.83
ISChords 17.11 17.11 14.31 14.31 8.55 14.31 14.31
ISInhouse 62.85 37.15 - - - - -

Table 3. Chord type distribution per dataset in percent (%).
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Figure 3. Illustration of ambiguities between chords due
to shared chord tones between the chord types m7[5, min,
and dom7 (a), and maj7, maj, and min (b). Figure inspired
by [1].

4.2 Synthetic Dataset for Extended-Vocabulary Chord
Recognition

Currently used chord recognition datasets are only partially
suitable for training and evaluation on seventh chord types.
Therefore, we created and published the novel
IDMT SMT CHORDS dataset 3 . We initially created two
MIDI files which cover all seven chord types listed in
Table 1. Here we focused on chord voicings, which are
commonly used on keyboard instruments and guitars. The
piano MIDI file includes all chord types in all possible root
note positions and inversions. The guitar MIDI file is based
on barré chord voicings with the root note located on the
low E, A, and D strings. We used several software instru-
ments from Ableton Live 4 and Garage Band 5 to synthe-
size these MIDI files with various instruments such as pi-
ano, synthesizer pad, as well as acoustic and electric guitar.

5. EVALUATION

In the experiment described in this section, we focus on
two types of ACR challenges: First, as discussed in [1],
the assignment of a chord label is often ambiguous as dif-
ferent chord types partly share chord tones. Figure 3 illus-
trates these ambiguities for two chord types which share
multiple chord tones. For instance, as shown on the left
side, a half-diminished seventh chord (e. g., Cm7[5) can
potentially be confused with different pitch classes like the

3 The download link for the audio and MIDI files will be published in
the camera-ready version of the paper.

4 https://www.ableton.com/en/live/
5 https://www.apple.com/mac/garageband/
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84% 0% 2% 1% 1% 4% 0% 2% 2% 1% 1% 0%

1% 84% 0% 2% 1% 2% 4% 0% 3% 2% 1% 1%

1% 1% 86% 0% 1% 1% 2% 3% 0% 2% 2% 1%

2% 1% 1% 86% 0% 1% 1% 1% 3% 0% 2% 1%

2% 3% 2% 1% 82% 0% 2% 1% 2% 3% 0% 3%

2% 2% 3% 1% 0% 85% 0% 1% 2% 1% 3% 0%
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1% 3% 0% 3% 1% 2% 1% 0% 85% 0% 1% 1%

2% 2% 4% 0% 2% 1% 3% 1% 1% 82% 0% 2%

2% 1% 2% 3% 0% 4% 1% 2% 2% 0% 83% 0%

0% 2% 1% 2% 2% 0% 3% 1% 3% 1% 1% 83%

Figure 4. Confusion matrix for chord root pitch class clas-
sification on isolated chord recordings (ISChords, ex-
periment E3, strategy S2).

minor chord built upon its minor third (E[m) or with the
dominant seventh chord built by introducing (A[) as a root
note (A[dom7).

Secondly, the datasets introduced in Section 4 have dif-
ferent acoustic characteristics. While some of the songs
in the Bs and Qn datasets were recorded in the 1970s,
other datasets such as RW and ISInhouse contain con-
temporary popular music recordings with a modern sound.
Also, the datasets are of different timbre complexity rang-
ing from simple isolated chords to complex audio mix-
tures. It was observed in related MIR tasks such as mu-
sic transcription [24] that data-driven models trained for
transcribing isolated notes do not generalize well to more
complex acoustic mixtures. Here, we aim to investigate
whether such findings can be replicated for ACR.

Table 4 summarizes 11 experiments, which are designed
to analyze the chord type ambiguity on isolated chord re-
cordings (E1 - E3, see Section 5.1), the generalization of
ACR models to mixture recordings (E4 - E6, see
Section 5.2), as well as two real-life ACR application sce-
narios (E7 - E11, see Section 5.3). In addition, we tested
the state-of-the-art ACR algorithm proposed in [9] as our
reference system (REF) for the major/minor chord vocab-
ulary (24 classes). The implementation from the madmom
[25] python library was used and its performance is docu-
mented in the last column of Table 4.

In all experiments, audio recordings are split into train-
ing and test set on a dataset-level or on a file-level. When
a dataset is used for training and test we perform a two-
fold random cross-validation. We use the weighted average
class f-score throughout this paper as evaluation measure.
The f-scores F24 and F84 are used to indicate if the evalu-
ation was performed on 24 chord classes (major/minor vo-
cabulary) or 84 classes (extended-vocabulary ACR). The
“no chord” class is neglected in all experiments. In the
following subsections, three groups of experiments will be
detailed whose results are summarized in Table 4.
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Figure 5. Confusion matrix for 7 chord types in
extended-vocabulary ACR on isolated chord recordings
(ISChords, experiment E3, strategy S2).
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Figure 6. Confusion matrix for 7 chord types in extended-
vocabulary ACR on mixed chord recordings (Combi7 +
ISChords, experiment E6, strategy S2).

5.1 Chord Type Ambiguity on Isolated Chord
Recordings

In experiments E1, E2, and E3 (first section of Table 4),
we train and evaluate ACR models on isolated chord record-
ings (ISChords) to study the effect of chord tone ambi-
guity in extended-vocabulary ACR. As explained in
Section 4.2, the contained chords are based on two sys-
tematically generated MIDI files with chord voicings from
keyboard and non-keyboard instruments. In our experi-
ments, we evaluate the influence of the chord voicing types
as well as of the modeling approach (compare Section 3.2).

For the major/minor chord vocabulary (24 classes), we
obtain high f-scores F24 between 0.81 and 0.99 using the
strategy S1. In the two experiments E1 & E2, we per-
form a chord voicing “cross-test” by exclusively assign-
ing piano chord voicings to the training set and test on
non-piano chord voicings and vice versa. Intuitively, we
observe lower f-scores (compared to E3) since the mod-
els are confronted with a different timbre (instrument) and
previously unseen chord voicings at test time. Contrary
to the 24 classes major/minor scenario, we observe that
for the 84 classes scenario (extended-vocabulary ACR),



# Training Set Test Set Strategy S1 Strategy S2 Reference
System
(REF)

F24 F84 F24 F84 F24

Chord Type Ambiguity on Isolated Chord Recordings (Section 5.1)
E1 ISChords (non-guitar) ISChords (guitar) 0.92 0.58 0.90 0.76 0.74
E2 ISChords (guitar) ISChords (non-guitar) 0.81 0.49 0.54 0.56 0.71
E3 ISChords ISChords 0.99 0.97 0.90 0.82 0.75
Generalization of ACR Models towards Complex Recordings (Section 5.2)
E4 ISChords Combi7 0.40 0.36 0.18 0.28 0.83
E5 Combi7 Combi7 0.83 0.63 0.84 0.64 0.83
E6 ISChords + Combi7 ISChords + Combi7 0.84 0.65 0.84 0.66 0.81
Real-Life ACR Application Scenarios (Section 5.3)
E7 ISChords ISInhouse 0.56 - 0.27 - 0.76
E8 ISChords ISGuitar 0.90 - 0.70 - 0.91
E9 Bs + Qn + RW + RWC + Os

+ISChords
ISInhouse 0.71 - 0.74 - 0.76

E10 Bs + Qn + RW + RWC + Os +
+ISChords

ISGuitar 0.90 - 0.91 - 0.91

E11 Bs + Qn + RW + RWC + Os
+ISChords

Bs + Qn + RW + RWC + Os
+ISChords

0.81 - 0.84 - 0.78

Table 4. This table lists all ACR experiments grouped into three sections described in Section 5.1, Section 5.2, and
Section 5.3. For each experiment, the second and third column introduce the applied training set and test set. For both
modeling strategies S1 and S2 introduced in Section 3.2, f-scores F24 and F84 are provided for the 24 classes major/minor
chord vocabulary and the 84 classes extended-vocabulary with the 7 chord types as listed in Table 1. For each experiment,
the best scores for each of the vocabulary are highlighted using bold font. The last column shows the f-score using the
reference system (REF) on the test set.

strategy S2 clearly outperforms S1. We assume that the
network capacity is large enough to learn distinct spectral
patterns for classifying among 24 chord labels. For the
extended-vocabulary scenario however, the amount of 84
classes is presumably too high to be learnt by one model
using strategy S1. Instead, splitting the classification task
into two easier sub-tasks (with not more than 12 classes
each) using strategy S2 seems slightly beneficial here. In-
terestingly, in experiment E3, where all chord voicings are
mixed, strategy S1 outperforms strategy S2 in both the 24
and 84 classes scenarios. When testing with state of the art
model (REF) in E3 we see that REF does not perform as
well since it is likely trained on complex audio mixtures.

Figure 4 shows the confusion matrix for the classification
of the chord root pitch class for the 84 class scenario for
experiment E3. It can be observed that the model shows a
good performance for all classes between 82 % and 86 %.
Similarly, as can be seen in Figure 5, the model easily
learns to distinguish between different chord shapes for
isolated chord recordings (ISChords dataset). However,
Figure 6 shows the more complicated test case of mixed
audio recordings (Combi7 + ISChords datasets). The
most prominent misclassifications between the maj7 to-
wards the maj, the dom7 towards the maj, as well as the
m7[5 towards the min and the dom7 all confirm the chord
tone ambiguities discussed in Section 5.

5.2 Generalization of ACR Models towards Complex
Recordings

In experiments E4 to E6 (second section of Table 4), we in-
vestigate (similar to [24]) whether and to what extent ACR
models trained on isolated instrument recordings gener-
alize towards complex music recordings in the Bs, Qn,
and RWC datasets. Also, we test whether adding the pro-
posed ISChords dataset can help to improve the perfor-
mance on extended-vocabulary ACR. As expected, a poor
f-score of F24 = 0.4 in E4 shows that the investigated
CNN-based ACR model does not generalize well from a
simple training scenarios (ISChords) towards a complex
test scenario (Combi7). The clearly higher f-scores of
F24 = 0.84 and F84 = 0.66 show that this kind of data-
driven classification models need to be trained on data of
similar timbre complexity as in the test scenario. We only
observe a small improvement of 0.02 (from E5 to E6) for
the 84 classes scenario in f-score when training with both
datasets (E6). The reference algorithm REF performs sim-
ilar to S2 in E5 and slightly worse than S1 and S2 with a
difference of 0.03 in E6.

5.3 Real-Life ACR Application Scenarios

In the experiments E7 to E11 (third section of Table 4), we
address realistic requirements for ACR systems to be de-
ployed in real-life applications. In a music education sce-
nario, musical instruments usually can be directly recorded
and analyzed without background sounds. Therefore, we
test the chord recognition performance on isolated poly-



phonic electric guitar recordings (ISGuitar), which in-
clude both chords and arpeggios. In a music annotation
scenario, we evaluate ACR models on a set of 111 contem-
porary pop and rock music recordings of various instru-
mentations
(ISInhouse). Similarly to E4, we can observe in exper-
iment E7 that ACR models trained only on isolated chord
recordings do not perform well on complex mixtures
(ISInhouse). However, such models show a good per-
formance (S1, F24 = 0.9, S2, F24 = 0.7) when being ap-
plied to isolated guitar recordings (E8). In both test cases,
the performance can be clearly improved by adding more
datasets to the training set, which reflect a larger variety
of music recordings (compare experiments E9 and E10).
In both experiments E9 and E10, the reference algorithm
REF performs almost similar except for E11 where S2
achieves a slightly better f-score.

6. CONCLUSIONS

In this paper, we used a state-of-the-art Deep Convolu-
tional Neural Network for ACR. In addition to publish-
ing a novel dataset of isolated chord recordings, we pro-
pose an alternative modeling strategy using two models for
the separate classification of the chord type and the chord
root pitch class. In our experiments, we first evaluate this
strategy for the controlled test case of isolated instrument
recordings. Most of the chord type misclassifications are
due to shared chord tones. The results indicate that ACR
even with extended-vocabulary is feasible (f-scores above
0.9), but the performance depends on whether the chord
voicings and instrument timbre used in the test set have
been learnt by the model before.

In a second set of experiments, we were able to replicate
the finding from automatic music transcription that data-
driven ACR models need to be trained on data of the same
complexity as the expected test data. Models trained on
isolated instrument recordings performed poorly on mixed
audio data. Finally, we evaluated the CNN model on two
separate datasets, which acted as a proxy for deploying an
ACR model into real-life production systems for the two
use cases music education and music annotation. Here, we
achieved high f-scores of 0.91 for isolated guitar record-
ings and 0.74 for mixed contemporary popular music re-
cordings showing the usefulness for real-life MIR applica-
tions.
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