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ABSTRACT

We present a model to express preferences on rhythmic 
structure, based on probabilistic context-free grammars, 
and a procedure that learns the grammars probabilities from 
a dataset of scores or quantized MIDI files. The model 
formally defines rules related to rhythmic subdivisions and 
durations that are in general given in an informal language. 
Rules preference is then specified with probability values. 
One targeted application is the aggregation of rules proba-
bilities to qualify an entire rhythm, for tasks like automatic 
music generation and music transcription. The paper also 
reports an application of this approach on two datasets.

1. INTRODUCTION

In the context of music notation, rhythm is commonly mod-
eled as a recursive subdivision of a temporal space orga-
nized in measures, beats and sub-beats. This naturally 
gives rise to a representation based on hierarchical struc-
tures (aka Rhythm Trees [1]). Moreover, this subdivision 
involves, at each level, choices based on the context (in 
particular the current metre) and on a long-established tra-
dition of best practices. They can be expressed as rules 
such as the notation convention “beam the notes in or-
der to highlight the beat position” [2]. Those rules (there 
are countless) express preferences on rhythm with differ-
ent purposes (e.g. reduce complexity, improve readability, 
etc.), but remains at an informal level and their application 
is crafted in both the core of engraving software, and the 
expertise of their human users.

In the present paper we propose a formal framework to 
express these rules in a computational context that enables 
an automatic determination of rhythm structures. Our model 
is based on Probabilistic Context Free Grammars (PCFG), 
where production rules and attached weight values spec-
ify rhythmic subdivisions in a way that is both formal and 
close to the musical intuition. Parse trees, representing 
the grammars’ computations, also represent Rhythm Trees 
(hence score structure).

A PCFG acts as a model replacing informal notation rules. 
One could manually define such a model, but one can also 
learn this model, as soon as we dispose of a large enough, 
high quality training set (of parse trees).
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Figure 1. PCFG training from sequences of musical events.

An immediate thought is to base the learning step on the
many corpora of existing (quantized) MIDI files or even
digital scores. This gives rise however to an important is-
sue: these datasets provide sequences of quantized events,
but there is no direct mean to obtain the hierarchical struc-
tures (rhythm trees) that are necessary for learning a gram-
mar. In the case of MIDI input, the rhythmic representa-
tion is simply missing (MIDI input). XML-based format
such as MusicXML or MEI seem more suitable. However
their hierarchical structure is not directly used for encod-
ing rhythmic trees which makes their extraction unreliable.
Moreover, there exists many ways to encode with these for-
mats a same input, and this gives rise to ambiguities when
it comes to identify a normalized rhythm representation.

In order to overcome this limitation, we propose to pro-
duce automatically training sets from collection of quan-
tized input. Since there exists many possible rhythm trees
that can be built from a single dataset entry, we need a deci-
sion guidelines to determine a unique candidate tree. Our
decision method is based on the assumption that the the
best rhythmic representation is the one that maximize the
notation readability. This assumption is supported by the
analysis of music notation conventions, and corresponds to
the intuition that the purpose of a notation language is to
obtain a concise, accurate and readable representation of
the noted content. The main goal of the present paper is to
develop an algorithm for training set production based on
this assumption, and to validate it on a set of representative
datasets.

The production algorithm relies on the definition of a tree
minimization criteria, and explores the space of solutions
trees that correctly represent a sequence input in order to
find the minimal one with respect to this criteria. Given
a dataset of sequences, we then apply the algorithm to
produce the corresponding training set of minimal rhythm
trees, and then carry out maximum likelihood estimation
in order to obtain the PCFG (Figure 1).

Finally, we validate our method by running our training
algorithm on a set of representative corpus, checking that
the obtained PCFG is consistent with best music notation
practices. Our results confirm that the best tree decision
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method based on tree minimization is a reliable compu-
tational method to produce PCFG that would, otherwise,
have to be manually defined.

We believe that our methodology is important for several
reasons. First, PCFGs are quite useful for music transcrip-
tion. In a companion paper [3] we describe an algorithm
that takes as input a non-quantized sequence of musical
events (e.g., a human performance of some music work,
with micro-rhythmic deviations) and relies on a PCFGs
to produce a music score. Note, that a PCFG is, in this
regard, more powerful than the tree-minimization method
mentioned above that only operates on quantized inputs.
Another common application for PCFGs is music genera-
tion [4]. More generally, disposing of a language model is
useful to measure in which extent this model is a reliable
representation of the actual language used in a corpus. In
concrete terms, it can be used for instance to evaluate the
quality of an existing notation, or to detect outliers in a
corpus (e.g., scores of MIDI files that present an unusual
rhythm). In general, we consider that this constitutes a
quite useful analytic tool to make sense of sequential inputs
that can be structured, quantified, explored and compared.

Lastly, the necessity of having a good grammar is fun-
damental to all the applications cited above. The tech-
nique presented in this paper allows to automatically build
a grammar from a large dataset of scores or MIDI files,
avoiding the manual building, a process that is very time
consuming and is error prone.

To summarize, the paper: (1) uses PCFGs as a formaliza-
tion of rhythm notation rules (Section 3), (2) learns PCFGs
from datasets of music events sequences, producing train-
ing sets thanks to a complexity minimization criteria, (Sec-
tion 4) and (3) validates that the resulting PCFGs trained
on a dataset indeed accurately capture the best practices es-
tablished in music notation (Section 5). We begin by Sec-
tion 2 that briefly reviews some of the current works that
use trees and grammar to work with rhythm and conclude
with Section 6.

2. STATE OF THE ART

Many works in the literature rely on linear models (e.g., n-
grams) that apply to the sequential flow of music events [5].

Another category, more suited to represent the hierar-
chical structure of rhythm notation, are models based on
trees and grammars. Starting from the Generative The-
ory of Tonal Music by Lerdahl & Jackendoff [6], those
models have been successfully explored for rhythmic nota-
tion processing and evaluation [1,7,8], meter detection [9],
melodic search [10] and music analysis [11–14].

In [10], probabilistic tree automata (PTA) learning tech-
niques are used for symbolic melody recognition. More
precisely, given one melody M represented as a melodic
tree (a structure similar to our parse trees), a PTA AM is
computed, so that, when given another melody M , AM
will return the probability that M is a cover (or a varia-
tion, or a plagia) of M . Therefore, although the objectives
of [10] differ from ours, a dataset of melodic trees was
needed in this work. However, this dataset is small, and

can be constructed manually since, by definition, only 1
melody is needed in order to train 1 automaton.

In [15,16], a notation of rhythm languages defined by for-
mal context-free grammars is proposed in order to fix the
kinds of rhythmic notation to consider using declarative
rules. In [3], we propose techniques based on weighted
context-free grammars for automatic rhythm transcription,
but the grammar is assumed given and no details are given
about the procedure to construct it. In this paper we start
from the same settings but we focus on the grammar cre-
ation, using results for context-free-grammars presented
in [17] to obtain a model that can be trained on a dataset.

3. MODEL SPECIFICATION

Probabilistic Context-Free Grammars (PCFGs) extend CF
grammars with rule probabilities. Computations of PCFGs
are conveniently represented as hierarchical structures called
parse trees. As observed in several papers, such tree struc-
ture are natural representations of common Western nota-
tion for rhythms, as they reflect structural nested decom-
position of measures into beats.

3.1 Context Free Grammars for Rhythm

A PCFG is a tuple G = 〈Q, qinit, R〉 where (i) Q is a
finite set of non-terminal symbols (nt), denoted q0, q1. . . ,
(ii) qinit ∈ Q is a starting non-terminal, and (iii) R is a
finite set of weighted production rules of one of the two
following types, where w is a weight value in [0, 1]:

(k−div) q0 −−→
w

q1 . . . qk with q0, . . . , qk ∈ Q and k > 1,

(leaf) q0 −−→
w

n with q0 ∈ Q and n ∈ N,

such that for all q0 ∈ Q,
∑

q0−→w α∈R

w = 1 (where α stands

for q1, . . . , qk ∈ Q or n ∈ N). The nt q0 is called the head
of both above rules.
A production rule (k−div) describes the division of a time
interval into parts of same length, e.g. the division of a
quarter note into 2 eight notes (for k = 2) or into a triplet
(for k = 3). The recursive application of (k−div) rules
represents nested divisions. A (leaf) rule expresses that
the time interval I reached in nt q0 contains n events, all
aligned at the left bound of I . When n > 1, it means
that we have n − 1 grace notes, of theoretical duration 0,
followed by one note spanning over I . When n = 0, I
is called a continuation, and its function is similar to that
of a tie or a dot in music notation. Continuations are a
fundamental concept in our model, since they practically
allow us to split a note in multiple parts that span multiple
terminal symbols.
The weight of nested divisions and event alignments is the
product of the weights of all the rules involved.

Example 1. Let us consider the PCFG in Table 1. Apply-
ing the rule ρ1 to [0, 1[ results in two sub-intervals [0, 12 [
and [ 12 , 1[, and both of them can be processed with any rule
with head q 1

2
. Assume that we apply ρ11 to the first sub-

interval and ρ3 to the second one, which is then divided



into [ 12 ,
3
4 [ and [ 34 , 1[. Then, we apply respectively ρ16 and

ρ17 to the latter two sub-sub-intervals of length 1
4 . The

above rule applications result in the division of the ini-
tial interval [0, 1[ into a partition made of [0, 12 [, [

1
2 ,

3
4 [ and

[ 34 , 1[. The first part contains a single event, at time 0, the
second is a continuation (of the first event), and the last part
contains a single event, at time 3

4 . Hence the above com-
putation describes the rhythm represented in Figure 2.b.

Following our focus on rhythmic notation, the rules of
type (leaf) only care about numbers of musical events, and
contain no information about the events themselves, like
pitch values, or the nature of events (note or chord). For
a representation of melodies, one could replace the natural
numbers in (leaf) rules by terminal symbols in some al-
phabet appropriate to the representation of musical events.

3.2 Parse Trees

We formalize the computations of a PCFG G = 〈Q, qinit, R〉
with the notion of parse tree, which is a tree t labeled with
rules of R, such that: every inner node of t is labeled by
a (k−div) rule, every leaf of t is labeled by (leaf) rules,
and if an inner node η is labeled by ρ = q0 −−→

w
q1 . . . qk,

then it has exactly k subtrees t1,. . . , tk whose respective
roots have heads q1, . . . qk. The subtree of t with root η
is then denoted by ρ(t1, . . . , tk). The weight weight(t)
of a parse tree t is the product of the weights of all the
transitions labeling its nodes. It is defined recursively by
weight

(
ρ(t1, . . . , tk)

)
= w ×

∏k
i=1 weight(ti) when ρ is

q0 −−→
w

q1 . . . qk and weight(ρ0) = w for ρ0 = q0 −−→
w

n.

Example 2. The parse tree corresponding to the computa-
tion described in Example 1 is depicted in Figure 2.a.

3.3 Timelines and Parse Tree Serialization

We consider in the following time-points expressed in frac-
tion of 1 measure (a rational value). A timeline ` = 〈I, σ〉
is the representation of a sequence of events made of a left-
open time interval I = [p, p′[ called carrier of ` and a se-
quence σ of time-points inside I . We assume that σ is in-
creasing but not strictly increasing (i.e. it may contain rep-
etitions). Also, the first event in σ may be distinct from the
left bound p of I . In this case (and also when σ is empty), it
means that ` starts with a continuation. The concatenation
of two timelines `1 = 〈[p1, p′1[, σ1〉 and `2 = 〈[p2, p′2[, σ2〉
such that p2 = p′1 is a timeline ` = 〈[p1, p′2[, σ〉 where σ is
the concatenation of σ1 with σ2.

We associate to every parse tree t of a PCFG G and time
interval I a timeline denoted ‖t‖I and defined by:
‖ρ0‖[p,p′[ = 〈[p, p′[, (p, . . . , p︸ ︷︷ ︸

n

)〉 for ρ0 = q0
w−→ n, and

‖ρ(t1, . . . , tk)‖I is the concatenation of the timelines ‖t1‖I1 ,
. . . , ‖tk‖Ik , for ρ = q0 −−→

w
q1 . . . qk, and where I1, . . . , Ik

is a partition of I into k sub-intervals of equal duration.

Example 3. The parse tree t = ρ1
(
ρ11, ρ3(ρ16, ρ17)

)
of

Figure 2.a is associated, for the time interval [0, 1[, the
timeline represented in Figure 2.b, computed as follows

Figure 2. A parse tree (a), the respective music notation
given a metric of 1

4 (b) and timeline given an interval [0, 1[
(c). The leaf representing a cont is highlighted in yellow.
Note that due to the cont , the timeline has 2 events, even
if the parse tree has 3 leaves.

(the operator + denotes timeline concatenation):

‖t‖[0,1[ = ‖ρ11‖[0, 12 [ + ‖ρ3(ρ16, ρ17)‖[ 12 ,1[
= ‖ρ11‖[0, 12 [ + ‖ρ16‖[ 12 , 34 [ + ‖ρ17‖[ 34 ,1[
= 〈[0, 12 [, (0)〉 + 〈[ 12 ,

3
4 [, ( )〉 + 〈[ 34 , 1[, (

3
4 )〉

= 〈[0, 1[, (0, 34 )〉.

We say that a parse tree t yields a timeline ` = 〈I, σ〉
iff ‖t‖I = `. Therefore every parse tree t of a PCFG G
yields an organization ‖tk‖I of events in time and also a
grouping structure for these events. In other terms, t is a
consistent representation of music events with respect to
the notation defined by G, and given a time signature, a
music score can be constructed from it (Figure 2). We call
this process score production. Differently from the serial-
ization process, the continuations remain in the final result
of the score production.

A parse tree can be used to represent an entire score or
part of it. In this paper we represent each measure of a
score with a different parse tree, i.e. the timeline produced
by the serialization of a parse tree will represent a single
measure. To summarize, we use parse trees as a model for
both rhythmic structure and rhythmic notation.

4. MODEL TRAINING

We consider the problem of computing weight values in
the rules of a PCFG from a dataset made of timelines.
Approaches based on maximum likelihood estimator [17]
permit to obtain such weights from a training set made of
parse trees. Therefore, in order to apply such approaches
(in Section 4.2), we need to convert datasets of timelines
into training sets containing parse trees (Section 4.1).

4.1 Training Set Construction from a Score Corpus

As mentioned in the introduction we produce a training set
of parse trees from a dataset of monophonic sequences ex-
tracted from a corpus of scores. This applies to a wide
range of input scores, from (quantized) MIDI files to XML
scores. In the latter case, one could potentially benefit from
the grouping elements (beaming and tuplets) in the music
notation, but this information calls for high-quality corpora
where the notation complies to the best practices. Our ap-
proach holds independently from such assumptions.
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Figure 3. Three different trees for the same timeline. The
terminal rules corresponding to a a continuation are high-
lighted in yellow.

From each score (or MIDI file) in the corpus, each part in
the score, each voice in the part, and each measure in the
voice, we extract a timeline (of carrier [0, 1[) from the list
of event durations. We use this datasetD of extracted time-
lines as input to build parse trees. The resulting set of parse
trees is the training set T used for learning a grammar.

Let us assume given an acyclic grammar G = 〈Q, qinit, R〉
whose weight are initially unknown (we call such G un-
weighted).

We produce for each timeline ` ∈ D one parse tree t of G
such that ‖t‖[0,1[ = `, called the representative of ` in the
training set. Since there exists several possible parse trees,
we need a criteria to choose a unique representative.

We choose the tree t with a minimum number of leaves.
This choice makes sense both from a computational and
from a musical point of view. In fact, we prefer that the
scores produced by G not to be crowded with useless notes
and ties. Later in Section 5.3 we will show that the re-
sults obtained with the above criteria are coherent with
some common recommendations for rhythm notation. It
means that the trained PCFG will be suited to represent

both rhythm and rhythm notation wrt such recommenda-
tions.

The following function rep returns for a nt q ∈ Q and a
timeline ` = 〈I, σ〉, a parse tree t of G, with root headed
by q, yielding `, and with a minimal number of leaves. In
the definition of rep, the min of a set T of trees is the tree
with a minimum number of leaves. This min is undefined
when T is empty or contains at least two trees with a min-
imum number of leaves.

If σ is empty or all points of σ coincide with the left
bound of I , then

rep(q0, `) = ρ0 (1)

where ρ0 = q0 → |σ|, if ρ0 ∈ R, or else rep(q0, `) is
undefined. For the other cases of σ,

rep(q, `) =

min
ρ=q→(q1,··· ,qk)

(
ρ
(
rep(q1, `1), . . . , rep(qk, `k)

))
(2)

where `1, . . . , `k is the partition of ` into k timelines of
equal duration.

Example 4. Let us present some steps of the computation
of rep for the grammar in Table 1 (forgetting the weight
values), and the timeline ` = 〈[0, 1[, (0, 34 )〉 of Figure 2.

rep(q1, `) = min


ρ1
(
rep(q 1

2
, `2,1), rep(q 1

2
, `2,2)

)
,

ρ2
(
rep(q 1

3
, `3,1), rep(q 1

3
, `3,2),

rep(q 1
3
, `3,3)

)
where

`2,1 = 〈[0, 12 [, (0)〉, `2,2 = 〈[ 12 , 1[, (
3
4 )〉,

`3,1 = 〈[0, 13 [, (0)〉, `3,2 = 〈[ 13 ,
2
3 [, ( )〉,

`3,3 = 〈[ 23 , 1[, (
3
4 )〉.

Following (1), rep(q 1
2
, `2,1) = ρ11, rep(q 1

3
, `3,1) = ρ14,

and rep(q 1
3
, `3,2) = ρ13. For rep(q 1

2
, `2,2) and rep(q 1

3
, `3,3),

more computation steps are needed.

The function rep can be implemented efficiently with Dy-
namic Programming through a tabulation procedure simi-
lar to the CYK parsing algorithm [18].

The representative of a 1-measure timeline ` in the dataset
D is rep(qinit, `). It may be undefined, either because there
is no parse tree t of G yielding `, or, on the contrary, be-
cause there are more than one such parse trees of G with a
minimum number of leaves. In the first case, G is too small
to represent D and should be completed. The second case
is discussed in Section 4.2.

This simple definition of rep is correct because the func-
tion which associate to a tree its number of leaves is mono-
tonic, i.e. if ti has more leaves than t′i, then ρ(t1, . . . , ti, . . . , tk)
has more leaves than ρ(t1, . . . , t′i, . . . , tk). It follows that
we can build a best representative t for a timeline ` (wrt
this criteria) from best representative for sub-timelines of `
(which are sub-trees of t).
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8 . Both have a minimal

number of leaves 6 and we cannot choose a representative
between them.

4.2 Computation of Grammar’s Weights

Let T be our training set of parse trees. We then compute
the weight values for the rules G with a Maximum Likeli-
hood Estimator [17]. For a rule ρ = q0 → α, where α
is either q1, . . . , qk or n ∈ N, let CT (ρ) be the number of
occurrences of ρ in the trees of T . The weight value for

the rule ρ is then defined as CT (ρ)∑
q0→β∈R

CT (q0 → β)
.

One can check that the grammar G′ defined from G with
these weight values is a PCFG, according to the definition
in Section 3.1 (see [17]).

Given a timeline ` ∈ D, it may happen that its representa-
tive is undefined because there is more than one parse tree
yielding ` with minimum number of leaves, see the exam-
ple in Figure 4. In this case, it is not possible to choose a
unique representative, and we will initially discard such `.
However, those timelines may contains useful information,
and we propose the following two step procedure:

1. compute the training set T like in in Section 4.1, using
only the timelines of D with a defined (unique) represen-
tative, and define weight values for G from T as above,
resulting in a PCFG G′.

2. for every timeline ` ∈ D discarded at step 1, compute
a representative t which is a parse tree of G′ build with a
modification of the function of Section 4.1 where the min
wrt the number of leaves of t is replaced by the max of
weight(t). Compute new weight values with these repre-
sentatives, resulting in a new PCFG G′′.

5. IMPLEMENTATION

In this section we first propose two different families of un-
weighted acyclic grammars acting as input to the construc-
tion of Section 4, then we present the result of the grammar
learning algorithm from some score corpora along with
some consideration from a musical perspective.

ρ1 : q1
0.6−−→ 〈q 1

2
, q 1

2
〉, ρ2 : q1

0.2−−→ 〈q 1
3
, q 1

3
, q 1

3
〉

ρ3 : q 1
2

0.1−−→ 〈q 1
4
, q 1

4
〉, ρ4 : q 1

2

0.7−−→ 〈q 1
6
, q 1

6
, q 1

6
〉

ρ5 : q 1
3

0.6−−→ 〈q 1
6
, q 1

6
〉, ρ6 : q 1

3

0.3−−→ 〈q 1
9
, q 1

9
, q 1

9
〉

ρ7 : q1
0.05−−→ 0, ρ8 : q1

0.1−−→ 1, ρ9 : q1
0.05−−→ 2

ρ10 : q 1
2

0−→ 0, ρ11 : q 1
2

0.1−−→ 1, ρ12 : q 1
2

0.1−−→ 2

ρ13 : q 1
3

0.05−−→ 0, ρ14 : q 1
3

0.05−−→ 1, ρ15 : q 1
3

0.0−−→ 2

ρ16 : q 1
4

0.1−−→ 0, ρ17 : q 1
4

0.8−−→ 1, ρ18 : q 1
4

0.1−−→ 2

ρ19 : q 1
6

0.3−−→ 0, ρ20 : q 1
6

0.7−−→ 1, ρ21 : q 1
6

0−→ 2

ρ22 : q 1
9

0.5−−→ 0, ρ23 : q 1
9

0.3−−→ 1, ρ24 : q 1
9

0.2−−→ 2

Table 1. An example of grammar with Kmax = 3,
Dmax = 2 and gnmax = 2. Rules 1 to 9 are k−div rules
and from 10 to 24 they are leaf rules.

5.1 Use-Cases of Unweighted Grammar

In theory, the learned grammar (the one given to the learn-
ing step, composed of rules without weights) must be as
complete as possible. However, for practical reasons and
in particular the size of a grammar that would represent all
possible rules, we need to adopt some restrictions. In our
implementation, we chose to:

1. allow k−div rules only with k prime number, up to
a prime number Kmax. Other k − split can be ob-
tained by sequential splits by the prime-number fac-
tors of k, e.g. to represent a 6-tuplet, we split by 2
and 3.

2. allow sequential rule application up to a maximum
depth Dmax, e.g. with Dmax = 2 we can split an
interval in k sub-interval, recursively split each one
of them and then stop the recursion.

3. allow only gnmax events in a interval, i.e. gnmax−1
grace-notes and one general-note.

The following are examples of practical PCFGs that re-
spect these choices.

Example 5. A first possibility (see Table 1) is to define
on rules that do not distinguish intervals of equal size in a
measure, whatever their position . Thus, [0, 12 [ and [ 12 , 1[
are represented by the same non terminal q 1

2
. Each non

terminal symbol represents a time interval of a specific du-
ration, and the terminals productions specify how many
events are contained in that interval (aligned to the left
boundary). Given the grammar of Table 1 an informal no-
tational rule for a 6

8 metric like: “prefer to divide in 2 parts
at measure level and subsequently in 3 parts” will trans-
late in our framework in weight(ρ1) ≥ weight(ρ2) and
weight(ρ4) ≥ weight(ρ3).

The grammar above is reduced in size, but does not allow
for fine-grained distinction of rules based on the position
of an interval in a measure, e.g., starting on a strong beat
or not. Another possibility is given below.



Example 6. Another possibility is to use a larger set of
non-terminal symbols that can distinguish intervals both on
the level of recursion and on the horizontal position. For
instance, the first half of a measure can be treated differ-
ently from the second half, or grace notes (in (leaf) rules)
can be allowed for the first note of a tuplet and forbidden
for the others. It allows to formally represent rules such as:
“Prefer to have longer notes on stronger beats” (given that
the time intervals that correspond to “stronger beats” are
known), by assigning a higher probability to a leaf rule in
those intervals and a higher probability of a k−div rule to
the other intervals at the same level.

5.2 Score Corpora and Datasets

We trained the two grammars presented in the above sec-
tion with the 1-measure timelines extracted from two cor-
pora of scores: Music21 corpus 1 and Enhanced Wikifonia
Leadsheet Dataset (EWLD) dataset [19]. We could com-
pute grammars for the whole dataset but there exist subsets
of scores sharing some common properties that are likely
to yield more consistent grammars if they are processed
independently. One such property is for instance the time
signature. Other possible groups could be inferred by style,
tempo marking and author, depending of the level of pre-
cision that is required. We chose to divide our datasets in
four subsets defined by the following time signatures: 4

4 ,
3
4 , 6

8 , 12
8 . The number of scores for each group is reported

in Table 2.
Within each score, we performed a simple operation of

data cleaning, deleting the measure whose events durations
did not sum to the correct duration given by the signature
(i.e. pickup measures), final measures or incorrectly no-
tated measures.

5.3 Trained PCFG from a Notational Point of View

In this section we analyze the result of the training step
from a musical point of view in order to show that the crite-
ria that we used to build unique parse trees from durations
(Section 4.1) is coherent with music notation conventions.

From music general conventions [2] we know that dif-
ferent time signatures have different grouping preferences
in order to expose the beat (e.g. points were stronger ac-
cent are placed). It is interesting to notice that there is an
high correlation between the probabilities learned for our
grammar (the grammar of the Example 5 is sufficient for
this analysis) and the divisions suggested by music nota-
tion (Table 3).

For example, music conventions state that a 3
4 measure

should be divided first in 3 parts (3 quarter notes); We can
translate this rules in a grammar-form assigning a higher
probability to the 3−div of a measure (with respect to other
k−div at measure level). Looking at the trees that we pro-
duced from the 3

4 measures (with the algorithm in Sec-
tion 4.1), we notice that this notation convention is re-
spected, since our trees have a 3−div at measure level in
82% of the cases.

1 http://web.mit.edu/music21/doc/about/
referenceCorpus.html

Our criteria to find the smallest tree (minimization of yield),
allows us to build trees that are coherent with notation con-
vention; therefore our model make sense to express rules
about both rhythmic structure and rhythmic notation. From
another point of view we can say that our criteria of min-
imizing the leaves generates results similar to that of an
expert engraver who aims at making the notation as read-
able as possible.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a model of rhythm structure
based on context-free-grammars and a way to learn it from
a dataset of scores, addressing the problem of the gener-
ation of a training set of trees.We show that our model
makes sense both from rhythm structure point of view than
from a rhythmic notation point of view, comparing the fre-
quency of the divisions in our model, with suggested divi-
sions in music notation.

The complete implementation 2 of the grammar genera-
tion and learning is made in python and C++. The system
is also partially implemented in the online digital score li-
brary NEUMA, in order to learn grammars from the corpus
of scores online.

With big grammars (particularly with the complete gram-
mar), we still have the problems of sparsity, i.e. we have
lots of zeros in the final results. The best solution would
be to have a bigger dataset, but alternatively the typical
approach is to use a smoothing technique. However we
would need to think carefully how to apply the smooth-
ing in order to add probabilities to rare rules in a way that
makes sense from a musical perspective.

The next objective is to test those grammar in a music
transcription algorithm from a MIDI performance, in order
to retrieve at the same time the quantized performance and
the relative score.
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